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Abstract 

Functional	technical	performance	usually	follows	an	exponential	dependence	on	time	but	
the	rate	of	change	(the	exponent)	varies	greatly	among	technological	domains.	This	paper	
presents	a	simple	model	that	provides	an	explanatory	foundation	for	these	phenomena	
based	upon	the	inventive	design	process.			
	
The	model	assumes	that	invention	‐	novel	and	useful	design‐	arises	through	probabilistic	
analogical	transfers	that	combine	existing	knowledge	by	combining	existing	individual	
operational	ideas	to	arrive	at	new	individual	operating	ideas.	The	continuing	production	of	
individual	operating	ideas	relies	upon	injection	of	new	basic	individual	operating	ideas	that	
occurs	through	coupling	of	science	and	technology	simulations.		
	
The	individual	operational	ideas	that	result	from	this	process	are	then	modeled	as	being	
assimilated	in	components	of	artifacts	characteristic	of	a	technological	domain.	According	
to	the	model,	two	effects	(differences	in	interactions	among	components	for	different	
domains	and	differences	in	scaling	laws	for	different	domains)	account	for	the	differences	
found	in	improvement	rates	among	domains	whereas	the	analogical	transfer	process	is	the	
source	of	the	exponential	behavior.	The	model	is	supported	by	a	number	of	known	
empirical	facts:	further	empirical	research	is	suggested	to	independently	assess	further	
predictions	made	by	the	model.	
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Nomenclature and terminology 
	
QJ	=	intensive	performance	of	artifacts	within	a	technological	domain,	J	
t	=	time	
IOI	=	individual	operating	ideas		
PIOI	=	probability	of	combination	of	any	two	IOI	
IOI0	=	basic	IOI	‐	IOI	that	first	introduce	a	natural	phenomenon	in	the	Operations	regime		
IOIC	=	cumulative	number	of	IOI	in	the	Operations	regime	
IOIL	=	maximum	number	of	possible	IOI	in	Operations	regime	at	time	t	
IOISC	=	IOIC	successfully	integrated	into	a	domain	artifact		
K	=	annual	rate	of	increase	in	IOIc	in	the	Operations	regime			
KJ	=	annual	rate	(when	time	is	in	years)	of	performance	improvement	measured	by	the	
slope	of	a	plot	of	ln	QJ	vs.	time	
fi	=	fitness	in	Understanding	regime	for	a	scientific	field	i		
FU	=	cumulative	fitness	of	Understanding	regime	
dJ	=	interaction	parameter	of	technological	domain	J	defined	as	interactive	out‐links	from	a	
typical	component	to	other	components	in	artifacts	in	domain	J		
sJ	=	design	parameter	affecting	the	performance	of	an	artifact	in	domain	J	
AJ	=	exponent	of	design	parameter	in	power	law	for	domain	J,	relating	performance	and	the	
design	parameter	
	
	

1. Introduction 
	
Inventions	are	the	outputs	of	the	design	process	when	they	reach	sufficient	novelty	and	
utility	to	rate	that	term:	they	are	a	basic	building	block	of	technological	progress	and	the	
fundamental	unit	of	this	paper.	In	our	formulation,	technological	domains	consist	of	
designed	artifacts	that	utilize	a	specified	body	of	knowledge	to	achieve	a	specific	generic	
function	(Magee	et.	al.	2014).	Thus,	technological	domains	involve	a	large	number	of	inter‐
related	inventions	as	even	single	artifacts	can	embody	multiple	inventions.	Arthur	(2006)	
used	the	term	“technologies”	to	describe	something	that	bridges	inventions	and	
technological	domains;	according	to	Arthur,	these	use	“effects”	to	achieve	some	“purpose”.	
Thus,	one	can	also	say	that	each	artifact	is	a	material	realization	of	its	design	that	
intentionally	embodies	the	effects.		
	
This	paper	brings	together	three	bodies	of	research	that	do	not	usually	interact.	The	first	is	
the	design	research	field,	particularly	its	cognitive	scientific	insights	on	the	design	process.	
The	second	is	the	technological	change	field	where	most	researchers	have	been	economists	
or	business	scholars.	The	third	area	is	quantitative	modeling	of	performance	of	artifacts.	
	
The	objective	of	the	work	reported	here	is	to	use	understanding	of	the	design	and	
invention	process	to	model	performance	‐	how	well	a	specific	designed	artifact	achieves	its	
intended	function	or	purpose.	In	particular,	we	examine	performance	trends	‐	the	time	
dependence	of	performance	as	realized	in	a	series	of	improved	designs	of	artifacts	that	arise	
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over	time.	We	do	so	in	an	attempt	to	develop	an	explanatory	and	quantitative	predictive	
model	for	why	performance	improves	exponentially	over	multiple	designs	with	widely	
varying	rates	among	technological	domains,	ranging	from	3	to	65%	annually	for	domains	
characterized	so	far.	Our	research	question	is	whether	a	quantitative	predictive	model	
based	upon	foundations	and	insights	about	the	design	process	leads	to	results	consistent	
with	this	exponential	behavior	and	whether	such	a	model	helps	explain	and	possibly	
predict	the	variation	in	the	rate	of	improvement.	We	first	discuss	some	relevant	literature	
in	each	of	the	three	intersecting	fields.	

2 Background 

2.1 Design, invention and cognitive psychology literature 
What	connections	between	technological	change	and	design	research	can	be	inferred	from	
the	existing	literature?	Business	scholars	and	economists	often	view	technical	change	as	
occurring	inside	a	black	box,	and	have	usually	avoided	examining	design	activities	that	are	
the	source	of	technological	change.	An	important	recent	publication	that	begins	to	build	a	
bridge	between	aspects	of	design	research	and	the	economics	of	technological	change	is	the	
paper	by	Baldwin	and	Clark	(2006).		These	authors	(and	Luo	et	al.	2014)	point	specifically	
to	a	central	role	for	design	in	achieving	economic	value.	In	addition	to	economic	
perspectives,	another	view	that	somewhat	ignores	design	is	the	linear	model	accredited	to	
Vannevar	Bush	(Bush,	1945),	which	considers	technological	change	occurring	through	
application	of	science.	As	a	counterview,	in	his	seminal	book,	The	Sciences	of	the	Artificial,	
Herbert	Simon	(1969,	1996)	was	the	first	to	highlight	that	design	is	an	activity	standing	on	
its	own	right,	like	natural	sciences,	and	has	its	own	set	of	logic,	concepts,	and	principles.	
While	the	primary	goal	of	natural	science	is	to	produce	predictive	explanations	of	natural	
phenomena,	the	primary	goal	of	design	is	to	create	artifacts.	The	design	activity	is	central	to	
creation	and	improvement	of	artifacts	in	all	technological	domains	and	involves	cognitive	
activities	such	as	the	use	of	knowledge,	reasoning,	and	understanding.		These	indisputable	
cognitive	activities	have	been	noted	by	many	scholars	who	have	studied	invention	and	
design	(Simon	1969,	Dasgupta	1996,	Gero	and	Kannengiesser	(2004),	Hatchuel	and	Weil	
2009).			
	
In	the	context	of	realizing	higher	performance	from	subsequent	generations	of	artifacts,	the	
role	of	invention,	as	one	outcome	of	the	design	process,	is	a	critical	one	since	improvement	
in	performance	of	artifacts	must	strongly	reflect	the	inventions.	As	Vincenti	(1990,	pg.	230)	
puts	it,	inventive	activity	is	a	source	of	new	operational	principles,	and	normal	
configurations	that	underlie	future	normal	or	radical	designs.	The	operational	principles	
(Polyani	1962,	Vincenti	1990)	of	an	artifact	describe	how	its	components	fulfill	their	
special	functions	in	combining	to	an	overall	operation	to	achieve	the	function	of	the	artifact.		
	
Models	found	useful	in	describing	the	creative	design	process	include	the	Geneplore	model	
(Finke,	Ward	and	Smith	1996),	topological	structures	(Braha	and	Reich	2003),	FBS	theory	
(Gero	and	Kannengiesser	2004),	CK	theory	(Hatchuel	and	Weil	2009),	infused	design	(Shai	
et	al.	2009),	analytical	product	design	(Frischknecht	et	al.	2009),	and	other	modeling	
approaches.	Although	all	of	these	frameworks	include	–	to	some	degree	‐	the	key	idea	of	
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combining	existing	ideas	(for	example,	in	the	form	of	conceptual	synthesis,	and	blending	of	
mental	models	described	in	discussion	of	the	Geneplore	model),	the	framework	found	most	
helpful	in	our	modeling	of	performance	changes	resulting	from	a	cumulative	design	process	
is	analogical	transfer.	Although	this	idea	can	be	traced	as	beginning	with	Polya	(1945)	or	
earlier,	the	framework	remains	an	active	area	in	design	research	(Clement	et	al.	1994,	
Holyoak	and	Thagard	1995,	Goel	1997,	Gentner	and	Markman	1997,	Leclerq	and	Heylighen	
2002,	Dahl	and	Moreau	2002,	Christensen	and	Schunn	2007,	Linsey	et	al.	2008,	Tseng	et	al.	
2008,	Linsey	et	al.	2012,	Fu	et	al.	2013).	Scholars	of	analogical	transfer	(Gentner	and	
Markman	1997,	Holyoak	et	al.	1995	and	Weisberg	2006)	explain	analogical	transfer	as	
involving	the	use	of	conceptual	knowledge	from	a	familiar	domain	(base)	and	applying	it	to	
create	knowledge	in	a	domain	with	similar	structure	(target):	analogical	transfer	exploits	
past	knowledge	in	both	the	base	and	target	domains.	The	analogies	utilized	can	be	local,	
regional	or	remote,	depending	on	surface	and	structural	similarities	between	objects	
involved	in	the	base	and	target	domains.	Weisberg	discusses	the	example	of	the	Wright	
brothers	using	several	analogical	transfers	to	first	recognize	and	solve	the	problem	of	flight	
control.	First,	they	viewed	flying	as	being	similar	to	biking	in	which	the	rider	has	to	be	
actively	involved	in	controlling	the	bike,	an	application	of	regional	analogy.	Interestingly,	
many	others	attempting	to	design	artifacts	for	flying	did	not	access	this	regional	analogy	
and	thus	did	not	even	identify	the	key	control	problem.	Second,	the	Wright	brothers	
studied	birds	to	see	how	they	controlled	themselves	during	flight,	and	learned	that	they	
adjusted	their	position	about	the	rolling	axis	using	their	wing	tips.	From	this	insight,	they	
had	the	idea	of	using	similar	moving	surfaces,	another	instance	of	using	regional	analogy.	
Lastly,	they	developed	the	idea	of	warping	the	wings,	demonstrated	by	using	a	twisted	
cardboard	box,	to	act	like	vanes	of	windmills	to	make	the	airplane	roll.	The	use	of	three	
analogical	transfers	in	combination	to	see	and	solve	the	flight	control	problem	is	a	clear	
case	of	analogical	transfer	but	there	is	also	evidence	(cited	earlier	in	this	paragraph)	of	
much	wider	applicability.		
	
There	are	more	abstract	versions	of	combinatorial	analogical	transfer	that	have	been	
proposed	in	the	wider	literature.	Based	on	an	extensive	historical	study	of	mechanical	
inventions	and	drawing	insights	from	Gestalt	psychology,	Usher	(1954)	proposed	a	
cumulative	synthesis	approach	for	creation	of	inventions.	The	notion	of	bisociation	
(Koestler	1964,	Dasgupta	1996)	develops	the	cumulative	synthesis	approach	further	and	
says	that	a	new	inventive	idea	is	ideated	combining	disparate	ideas.	More	recently,	Fleming	
(2001)	and	Arthur	(2006)	have	respectively	used	the	same	combinatorial	notions	of	
invention	in	studying	technological	change.	Other	research	in	the	technological	change	
literature	also	discusses	a	related	concept	that	is	usually	called	“spillover”.	Rosenberg	
(1982)	showed	that	such	technological	spillover	greatly	impacted	the	quantity	and	quality	
of	technological	change	in	the	United	States	in	the	20th	century	–	a	result	supported	by	
Nelson	and	Winter	(1982)	and	Ruttan	(2001).		Indeed,	a	recent	paper	by	Nemet	and	
Johnson	(2012)	states	that	“one	of	the	most	fundamental	concepts	in	innovation	theory	is	
that	important	inventions	involve	the	transfer	of	knowledge	from	one	technical	area	to	
another”.		We	note	that	these	descriptions	do	not	always	make	a	clear	distinction	regarding	
whether	the	transfer	is	occurring	at	the	idea	level	or	at	the	artifact	level.	They	are	silent	
regarding	how	and	from	where	designers	or	inventors	get	their	disparate	ideas	to	combine	
and	regarding	details	about	the	complexities	of	transfer	and	combination.		
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Analogical	transfer	of	ideas	as	a	broad	mechanism	and	expertise	as	the	foundation	of	ideas	
(Weisberg,	2006)	provides	adequate	specificity	for	modeling	science	and	invention	in	this	
paper.	Weisberg	contends	that	analogical	transfer	is	utilized	in	generation	of	both	scientific	
and	technological	knowledge.	Existing	knowledge	provides	the	foundational	basis	for	
analogical	transfer	to	occur.	A	similar	argument	has	been	applied	to	the	more	abstract	
notion	of	combinations.	Usher	describes	a	cumulative	synthesis	approach	‐	a	four	step	
social	process	(perception	of	the	problem,	setting	the	stage,	the	act	of	insight,	critical	
revision)	‐	which	brings	together	inventive	structures	to	create	new	inventions.	Ruttan	
(1959),	has	argued	that	Usher’s	formulation	provides	a	“theory	of	the	social	processes	by	
which	‘new	things’	come	into	existence	that	is	broad	enough	to	encompass	the	whole	range	
of	activities	characterized	by	the	terms	science,	invention,	and	innovation”.		Models	of	both	
Understanding	and	Operations	regime	in	our	paper	(defined	in	the	next	paragraph)	utilize	
the	abstraction	that	knowledge	is	created	by	probabilistically1	combining	existing	
knowledge	made	available	by	analogical	transfer.	
		
Vincenti	(1990),	and	Mokyr	(2002)	take	the	view	that	scientific	and	technological	
knowledge	can	be	classified	into	descriptive	(Understanding)	and	prescriptive	
(Operations)	knowledge2	regimes.		The	Understanding	regime	can	be	seen	as	a	body	of	
‘what’	knowledge	and	includes	scientific	principles	and	explanations,	natural	regularities,	
materials	properties,	and	physical	constants.	A	unit	of	understanding	is	falsifiable	(Popper	
1959)	and	enables	explanation	and	prediction	about	specific	phenomena,	including	
behavior	of	artifacts.	The	Operations	regime,	on	the	other	hand,	can	be	viewed	as	a	body	of	
‘design	knowledge’,	which	suggests	how	to	leverage	natural	‘effects’	(Arthur,	2006,	
Vincenti,	1990))	to	achieve	a	technological	advantage	or	purpose.	It	includes,	operating	
principles,	design	methods,	experimental	methods,	and	tools	(Dasgupta	1996,	Vincenti	
1990).	Based	on	this	distinction,	understanding	enables	generation	of	operational	
knowledge,	which	ultimately	contributes	towards	design	of	some	artifact.	However,	
operations	is	not	entirely	based	upon	existing	understanding	and	in	fact	innovations	in	
know‐how	can	and	often	do	occur	before	any	understanding	of	related	natural	effects	is	
available.	
	
An	important	aspect	of	design	and	invention	is	the	cooperative	interaction	between	
Understanding	and	Operations	regimes	(Musson,	1972,	Musson	and	Robinson	1989).	Using	
a	historical	perspective,	Mokyr	(2002)	has	carefully	observed	that	a	synergistic	exchange	
between	the	two	has	been	occurring,	where	each	enables	the	other.	The	contribution	of	
Understanding	to	Operations	is	well	known:	it	provides	principles,	and	regularities	of	
natural	effects,	including	new	ones,	in	the	form	of	predictive	equations,	and	descriptive	
																																																								
1	At	a	point	in	time,	not	all	possible	combinations	of	existing	knowledge	lead	to	new	
knowledge.	
2	We	use	the	terms	“Understanding”	and	“Operations”,	since	each	one	brings	more	clarity	to	
the	nature	of	underlying	activity.	Understanding	refers	to	conceptual	insight	that	is	
generated	about	an	object	or	environment,	whereas	Operations	refers	to	the	idea	of	acting	
on	an	object	or	environment	to	get	some	desired	effect,	as	well	as	experimental	methods	
included	in	the	term	‘science’.				
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facts,	such	as	material	properties.	Fleming	and	Sorenson	(2004)	provide	evidence	that	
understanding	helps	inventors	by	providing	a	richer	map	to	search	for	operating	ideas,	
which	can	be	combined	together.	Understanding	also	provides	insight	about	where	new	
technological	opportunities	may	be	found	(Klevoric	et	al.	1995).	Beyond	these	
contributions,	there	is	the	more	general	view,	discussed	in	the	initial	paragraph	of	this	
section,	that	new	operational	ideas	can	be	derived	from	new	understanding.	What	is	less	
discussed	is	the	multi‐faceted	contributions	of	Operations	to	the	Understanding	regime.	In	
his	paper,	Sealing	wax	and	string,	de	Solla	Price	(1983),	a	physicist,	and	historian	of	science,	
highlighted	that	instruments	(an	output	of	the	Operations	regime)	were	a	dominant	force	
in	enabling	scientific	revolutions.	He	states:	“changes	in	paradigm	that	accompany	great	
and	revolutionary	changes	(in	science)	were	caused	more	often	by	application	of	
technology	to	science,	rather	than	changes	from	‘putting	on	a	new	thinking	cap’	“.	
Operations	provide	tools	and	instruments	to	make	measurements,	and	to	make	new	
discoveries.	In	his	book,	The	Scientist:	A	History	of	Science	Told	Through	the	Lives	of	its	
Greatest	Inventors,	Gribbin	(2002),	a	British	astrophysicist,	and	science	writer,	has	
described	how	the	ability	to	grind	eyeglass	lenses	made	it	possible	to	make	better	
telescopes,	and	hence	paved	the	way	for	astronomers	to	make	new	discoveries.	New	or	
improved	observational	techniques	are	still	a	major	driver	of	progress	in	science.	Gribbin	
has	aptly	summarized	the	enabling	exchange	between	the	two	regimes:	“new	scientific	
ideas	leading…	to	improved	technology	and	new	technology	providing	scientists	with	the	
means	to	test	new	ideas	to	greater	and	greater	accuracy”.	Additionally,	the	Operations	
regime	provides	new	problems	for	the	Understanding	regime	to	study,	and	has	led	to	birth	
of	new	fields	in	Understanding	(Hunt	2010).	Based	upon	these	insights	and	with	our	focus	
on	explaining	performance	improvement	arising	from	continuing	streams	of	inventions,	
our	model	treats	mutual	exchange	between	Understanding	and	Operations.	
	
In	design	of	artifacts,	Simon	(1962)	introduced	the	notion	of	interactions	in	his	essay	on	the	
complexity	of	artifacts.	When	a	design	of	an	artifact	is	changed	from	one	state	to	another	
(with	differences	between	the	two	states	as	defined	by	multiple	attributes,	say	D1,	D2,	and	
D3)	by	taking	some	actions	(say,	A1,	A2,	and	A3),	in	many	cases,	any	specific	action	taken	
may	affect	more	than	one	attribute,	thus	potentially	manifesting	as	interactions	of	the	
attributes.	The	same	notion	of	interaction/conflicts	is	captured	by	the	concept	of	coupling	
of	functional	requirements	(Suh	2001),	or	dependencies	between	characteristics	(Weber	
2003),	which	can	occur	when	two	or	more	functional	requirements	are	influenced	by	a	
design	parameter.	Theoretically	it	seems	ideal	to	have	one	design	parameter	controlling	
one	functional	requirement	to	achieve	a	fully	decomposable	(modular)	design	(Suh	2001,	
Baldwin	and	Clark	2000).	However,	Whitney	(1996,	2004)	has	argued	that,	in	reality,	how	
decomposable	a	design	of	an	artifact	can	be	depends	on	the	physics	involved	or	additional	
constraints,	such	as	permissible	mass.	These	are	reflected	as	component‐to‐component,	
and	component‐to‐system	interactions,	or	as	a	need	to	have	multi‐functional	components.	
Consequently,	Whitney	argues,	complex	electro‐mechanical‐optical	(CEMO)	systems,	
primarily	designed	to	carry	power,	cannot	be	made	as	decomposable	as	VLSI	systems	
primarily	designed	to	transmit	and	transform	information.	For	example,	in	energy	
applications,	the	impedance	of	transmitting	and	receiving	elements	has	to	be	matched	for	
maximum	power	transfer,	thus	making	the	two	elements	coupled.	Further,	CEMO	systems	
typically	need	to	have	multi‐functional	components	in	order	to	keep	the	artifact	size	
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reasonable,	creating	coupling	of	attributes	at	the	component	level.	Another	type	of	
interaction	Whitney	has	identified	are	the	side	effects,	such	as	waste	heat	in	computers,	
and	corrosion	of	electrodes	in	batteries	‐	that	occur	in	artifacts,	which	in	some	electro‐
mechanical	systems	can	consume	significant	portion	of	the	design	effort	for	their	
mitigation.	The	presence,	and	thus	the	resolution,	of	these	different	interactions	cause	
significant	delay,	consume	significant	engineering	resources	and	potentially	stop	
applications	of	some	concepts,	thus	making	the	level	of	interactions	of	a	technological	
domain	a	potentially	strong	factor	influencing	its	rate	of	improvement.	Based	upon	
Whitney’s	work,	the	effect	of	interactions	on	rates	of	improvement	was	suggested	
qualitatively	by	Koh	and	Magee	(2008)	and	a	quantitative	model	of	the	effect	was	
developed	by	McNerney	et	al.	(2011)	–	see	section	2.3.	
	
The	influence	of	design	parameters	on	artifact	performance	is	an	essential	part	of	design	
knowledge.	Many	technological	domains	have	complex	mathematical	equations	relating	
some	aspects	of	performance	with	design	parameters.	Indeed,	the	so‐called	engineering	
science	literature	has	such	equations	for	many	aspects	affecting	the	design	of	artifacts	of	
perhaps	all	technological	domains.		Simpler	relationships	concerning	the	geometrical	scale	
of	artifacts	are	also	available	and	generally	give	performance	metrics	as	a	function	of	a	
design	variable	raised	to	a	power.	Use	of	power‐law	relationships	can	be	found	in:	1)	Sahal	
(1985)	who	studied	scaling	in	three	different	sets	of	artifacts	‐	airplanes,	tractors,	and	
computers;	and	2)	Bela	Gold	(1974)	who	demonstrated	that	doubling	the	size	of	a	blast	
furnace	reduces	their	cost	by	about	40%.		The	constant	percent	change	per	doubling	in	size	
results	from	the	power	law	(assumed	by	Gold)	between	performance/cost	and	geometrical	
variables	such	as	volume.	
	

2.2 Technological change literature 
What	descriptive	models	and	theories	help	us	understand	why	technologies	improve	and	
how	the	improvement	patterns	are	structured?	Schumpeter	(1934)	introduced	the	idea	
that	entrepreneurs,	whose	primary	role	is	to	provide	improved	products	and	services	
through	innovation,	drive	economic	progress.	These	innovations,	which	Schumpeter	
describes	as	industrial	mutations,	displace	competing	products	and	services	from	the	
economy.	However,	they,	too,	are	displaced	by	higher	performing	innovations	that	follow,	
thus	perpetuating	the	cycle	of	creative	destruction.	Building	upon	Schumpeter’s	notion,	
Solow	(1956)	recognized	and	incorporated	technological	change	as	the	key	element	in	his	
quantitative	explanatory	theory	of	economic	growth.	The	basic	conclusion	that	
technological	change	is	the	foundation	of	sustained	economic	growth	has	stood	the	test	of	
time.	Later	theorists	of	economic	growth	(Arrow	1962,	Romer	1990,	Acemoglou	2002)	
have	attempted	to	deal	with	the	more	complex	problem	of	embedding	technological	change	
within	the	economy	(endogenous	to	different	degrees).	Although	the	later	theories	are	
important,	the	issues	are	outside	the	scope	of	this	paper	and	will	not	be	covered	here.	A	
related	question	of	demand‐pull	and	technology‐push	does	have	more	relevance.	
	 	 	
What	drives	technological	innovation?	Some	early	explanations	emphasized	pure	demand	
push	(Carter	and	Williams	(1957,	1959),	Baker	et	al.	1967,	Myers	and	Marquis	1969,	
Langrish	et	al.	1972,	Utterback	1974)	where	the	needs	of	the	economy	at	a	given	time	
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dictate	technological	direction.	Mowery	and	Rosenberg	(1979)	reanalyzed	the	data	and	
methodology	in	this	early	work	and	arrived	at	a	strong	role	for	science/technology	push	
(the	discoveries	of	scientists	and	inventors	primarily	determine	technological	direction).	
Taking	a	balanced	view,	Dosi	(1982)	argued	that	both	market‐pull	(customer	needs	and	
potential	for	profitability)	and	technology‐push	(in	the	form	of	promising	new	technology,	
and	the	underpinning	procedures)	are	equally	important	for	being	sources	of	innovation.		
		
Tushman	and	Anderson	(1986)	discuss	discontinuities	as	having	large	socio‐technical	
effects	and	note	that	such	discontinuities	are	an	essential	element	of	technological	change.	
In	another	highly	referenced	paper,	Henderson	and	Clark	(1990)	emphasize	the	
importance	of	architectural	change	of	artifacts	‐	as	opposed	to	component	change	‐	having	
large	effects	on	the	firm‐level	impact	of	change.	Christensen	(1996),	on	the	other	hand,	
views	technological	change	occurring	as	a	series	of	disruptive	product	innovations	that	
start	in	a	niche	market	catering	to	different	functional	requirements,	but	then	rapidly	
improve	towards	the	requirements	of	mainstream	performance.	The	disruptive	technology	
surpasses	the	mature	market	leaders	(by	achieving	the	necessary	performance	in	smaller,	
cheaper	artifacts),	and	displaces	them.	
			
All	of	the	concepts	of	technological	change	described	in	the	preceding	paragraphs	‐	at	least	
implicitly	‐	depend	upon	relative	rates	of	change	of	performance.	This	is	the	focus	of	our	
modeling	effort	so	we	will	now	briefly	review	concepts	related	to	trends	in	performance	of	
designed	artifacts,	and	what	patterns	they	have	followed.		We	first	review	two	established	
frameworks	–	generalizations	of	Wright’s	early	research,	and	Moore’s	Law	‐	for	describing	
trends	in	technological	performance.	In	1936	Theodore	Paul	Wright	(1936)	in	his	seminal	
paper	“Factors	affecting	the	Cost	of	Airplanes”	for	the	first	time	introduced	the	idea	of	
measuring	technological	progress	of	artifacts.	From	his	empirical	study	of	airplane	
manufacturing,	he	demonstrated	that	labor	cost	or	total	cost	of	specific	airplane	designs	
decreased	as	a	power	law	against	their	cumulative	production.	This	relationship	is	
expressed	as:		
	
	 C	=	C0	P‐w	 (1)	 	
	
Where	C0,	and	C	are	unit	cost	of	the	first,	and	subsequent	airplanes	respectively,	and	where	
P	and	w	are	cumulative	production	and	its	exponent	that	relates	it	to	unit	cost.	Wright	
explains	that	labor	cost	reductions	are	realized	as	shop	floor	personnel	gain	experience	
with	the	manufacturing	processes,	and	material	usage	and	have	access	to	better	production	
tools.	Since	Wright’s	work,	this	approach	has	been	used	to	study	production	of	airplanes	
and	ships	during	World	War	II,	and	extended	to	private	enterprises	(Yelle,	2007).		It	should	
be	noted	that	Wright	did	not	look	at	improvement	due	to	new	designs,	instead	he	only	
considered	improved	manufacturing	of	a	fixed	design.		
	
Gordon	Moore	(1965)	presented	the	second	approach	‐	using	time	as	the	independent	
variable	and	investigating	a	series	of	newly	designed	artifacts‐	in	his	seminal	paper	that	
describes	improvement	of	integrated	circuits.	He	observed	that	the	number	of	transistors	
on	a	die	was	doubling	roughly	every	18	months	(modified	to	2	years	in	1975).	This	
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exponential	relationship	between	the	number	of	transistors	on	a	die	and	time,	famously	
known3	as	Moore’s	Law,	can	be	mathematically	expressed	as:		
	
	 QJ(t)	=	QJ(t0)	exp	{KJ	(t‐t0)}	 (2)	 	

Where	QJ(t0)	and	QJ(t)	are	the	number	of	transistors	per	die	(a	measure	of	performance)	at	
time	t0	and	time	t,	and	KJ	is	the	rate	of	improvement	(annual	if	time	is	in	years).		For	
integrated	circuits,	the	exponential	relationship	has	held	broadly	true	for	five	decades.	
Others	(Girifalco	1991,	Nordhaus	1996,	Koh	and	Magee	(2006,	2008)	and	Leinhard	2008)	
utilized	this	temporal	approach	to	study	performance	of	different	technologies,	and	have	
demonstrated	that	many	technologies	exhibit	exponential	behavior	with	time.	More	
recently,	Magee	et	al.	(2014)	extended	the	study	to	73	different	performance	metrics	in	28	
different	technology	domains.	The	performance	curves	have	continued	to	demonstrate	
exponential	behavior,	although	annual	rates	vary	widely	across	domains.	We	note	that	
Moore	and	all	others	who	used	his	framework	basically	compared	the	performance	of	
different	designs	over	time	differentiating	the	Wright	and	Moore	frameworks.	However,	it	
is	also	possible	to	use	the	Wright	framework	for	different	designs	but	only	if	the	amount	
produced	increases	exponentially	with	time	(Sahal,	1979,	Nagy	et	al.	2013,	Magee	et	al	
2014).	
	
In	order	to	clarify	for	readers	the	nature	of	empirical	performance	data,	we	present	
performance	data	for	two	sample	domains,	magnetic	resonance	imaging	(MRI)	and	electric	
motors	(Fig.	1a),	and	a	summary	of	improvement	rates	for	28	domains	(Fig.	1b	from	Magee	
et	al.	2014).	The	exponential	trend	for	each	domain	can	be	described	by	equation	(2),	
where	QJ	(t)	and	QJ	(t0)	are	the	intensive	performance	of	an	artifact	in	domain	J	at	time	t	
and	t0,	and	KJ	is	the	annual	rate	of	improvement	of	the	domain	in	question.	
	
	

																																																								
3	This	designation	was	given	to	the	relationship	by	Cal	Tech	professor	Carver	Mead.	
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Fig. 1a: Exponential growth of performance in sample domains – Electric motor and Magnetic 
resonance imaging (MRI). Adapted from Magee et al. 2014 with permission. 

	
      KJ	(%)	

Fig. 1b: Annual rate of performance improvement, KJ, for 28 domains. Adapted from Magee 
et al. 2014	with permission. 
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A	recent	paper	(Benson	and	Magee,	2015a)	has	empirically	investigated	the	variation	of	the	
improvement	rates	in	these	28	domains.	The	work	has	important	relationships	to	the	
current	work	so	we	describe	it	to	note	the	relationships	but	to	also	clarify	the	fundamental	
differences.	Benson	and	Magee	found	strong	correlations	between	specific	meta‐
characteristics	of	the	patents	in	the	28	domains4	and	the	improvement	rate	in	the	domains.	
These	authors	found	that	patent	meta‐characteristics	reflecting	the	importance	(citations	
per	patent	by	other	patents),	recency	(age	of	patents	in	a	domain)	and	immediacy	(the	
average	over	time	of	the	usage	of	current	new	knowledge	in	the	domain)	are	all	correlated	
with	the	improvement	rate.		They	found	a	particularly	strong	correlation	(r=	0.76,	p	=2.1x	
10‐6)	with	a	metric	that	combines	immediacy	and	importance	(the	average	number	of	
citations	that	patents	in	the	domain	receive	in	their	first	three	years).	The	findings	(and	
associated	multiple	regressions)	are	robust	over	time	and	with	domain	selection	and	are	of	
practical	importance	in	predicting	technological	progress	in	domains	where	performance	
data	is	not	available	(Benson	and	Magee,	2015).	Nonetheless,	the	conceptual	basis	for	the	
findings	is	observed	attributes	of	the	inventive	output	from	a	technological	field	
(importance,	recency	and	immediacy	of	a	patent	set)	and	not	the	process	of	invention,	
design	knowledge	or	other	technical	aspects	of	designed	artifacts	in	the	domain.	The	aim	of	
the	work	reported	in	the	present	paper	is	to	develop	a	model	that	yields	insights	about	the	
pace	of	change	without	recourse	to	concepts	based	upon	observation	of	the	output	over	
time.	If	fully	successful,	we	would	be	able	to	judge	the	potential	for	change	based	only	upon	
the	nature	of	the	design	knowledge	and	we	might	even	be	able	to	find	new	approaches	that	
might	achieve	technological	goals	at	more	rapid	improvement	rates.	
	

2.3 Literature on quantitative modeling of technological change 
What	research	has	attempted	to	model	the	technological	performance	trends	that	we	just	
discussed?	Muth	(1986)	and	Auerswald	et	al.	(2000)	have	developed	models	to	explain	
Wright’s	results	by	introducing	the	notion	of	search	for	technological	possibilities.	Each	
paper	assumes	that	random	search,	a	key	element	of	technological	problem	solving,	for	a	
better	technique	is	made	within	a	fixed	population	of	possibilities.	Considering	a	case	of	a	
single	manufacturing	process,	Muth	(1986)	developed	a	model	to	capture	the	idea	of	
substituting	manufacturing	sequences	with	better	ones.	He	argues	that	shop	personnel	
improve	the	process	by	learning	through	experience	and	making	random	search	for	new	
techniques,	which	enable	improvement	of	processes	leading	to	cost	reductions.		Muth	
demonstrated	that	the	notion	of	fixed	possibilities	easily	leads	to	fewer	and	fewer	
improvements	that	can	be	realized	and	he	argues	that	the	data	(for	fixed	designs)	shows	a	
leveling	off	and	eventual	stoppage	as	the	model	suggests.	Building	on	Muth’s	idea	of	
random	search	within	a	set	of	fixed	design	possibilities,	Auerswald	et	al.		modeled	a	multi‐
process	system,	in	which	different	processes	can	be	combined	to	create	diverse	recipes,	
and	for	the	first	time	introduced	the	notion	of	interactions	by	allowing	adjoining	processes	
to	affect	each	other’s	cost.		
	

																																																								
4	The	patents	are	found	by	a	new	technique	‐	Benson	and	Magee	2015b		
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Following	similar	reasoning	as	Muth	and	Auerswald	et	al.,	McNerney	et	al.	(2011)	have	
developed	a	stochastic	model	to	explain	how	the	cost	reduction	of	a	multi‐component	
system	is	influenced	by	component	interactions,	which	they	refer	to	as	connectivity	
between	components.	McNerney	et	al.	operationalized	the	notion	of	interactions	as	out‐
links	representing	influence	of	a	component	on	other	components.	When	a	specific	
component	in	a	domain	artifact	changes	by	introducing	a	new	operational	idea,	the	change	
affects	the	design	of	all	the	components	it	influences.	If	the	performance	of	the	artifact	
(influencing	and	influenced	components)	as	a	whole	improves,	then	McNerney	et	al.	
consider	the	interactions	to	be	resolved	and	the	operating	idea	is	considered	successful.	
The	McNerney	et	al.	paper	demonstrates	that	artifacts	with	more	interactions	improve	
more	slowly	than	artifacts	with	less	interactions.	
	
Using	agent‐based	modeling,	Axtell	et	al.	(2013)	have	developed	a	competitive	micro‐
economic	model	of	technological	innovation	utilizing	the	notion	of	technological	fitness.	
Although	they	do	not	discuss	or	cite	Moore’s	law	or	his	work,	they	have	demonstrated	that	
cumulative	technological	fitness	of	all	agents	increases	exponentially	overtime.	This	is	
different	from	other	researchers	who	have	predominantly	been	focused	on	Wright’s	
framework.	Consistently,	Axtell	et	al.	consider	new	designs	and	not	just	process	
optimization.	
	
Using	a	simulation	approach,	Arthur	and	Polak	(2006)	have	modeled	how	new	generations	
of	artifacts	arise	by	combining	currently	available	artifacts.	The	artifacts	considered	are	
electronic	logic	gates.	New	designs	(combinations)	are	more	complex	logic	gates	that	can	
then	also	be	combined	into	even	more	complex	logic	gates.	In	their	model,	Arthur	and	
Polak	specify	several	design	goals	towards	to	which	the	logic	gates	evolve.	They	have	
demonstrated	that	designs	with	higher	levels	of	complexity	cannot	be	attained	without	
realizing	design	configurations	with	intermediate	levels	of	complexity,	and	new	designs	
with	higher	functionality	substitute	for	current	designs	with	inferior	functionality.	This	
model	is	much	richer	than	other	models	in	representing	the	artifact	part	of	the	design	
process;	however,	it	does	not	consider	performance	improvement,	as	do	the	other	models.	
It	is	also	limited	to	developing	pre‐specified	artifacts	and	is	thus	a	specific	process;	
consequently,	it	is	not	open‐ended	or	general	which	are	characteristics	necessary	for	
modeling	performance	trends	for	general	technological	domains.	
	
Although	some	are	more	explicit	than	others,	one	feature	common	to	all	these	models	is	
that	all	utilize	the	notion	of	building	upon	the	performance	(in	the	form	of	cost)	or	designs	
of	the	past,	a	key	feature	of	cumulative	processes	included	in	the	model	presented	here.		On	
the	other	hand,	they	do	not	consider	two	aspects	we	believe	useful	in	answering	our	
research	question.	First,	none	of	them	discusses	or	includes	the	influential	role	played	by	
exchange	between	science	and	technology.	In	this	paper,	we	treat	the	design	process	and	
the	exchange	between	science	and	technology	as	important	elements	for	understanding	the	
change	in	performance	over	time	that	in	turn	is	essential	to	understanding	technological	
change.	Second,	none	consider	the	design	process	or	operating	principles	and	instead	look	
at	combinations	at	the	artifact	level	instead	of	combination	of	ideas.	
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3. Overview of the model  

3.1 Conceptual basis of model 
	
The	desired	output	from	the	constructed	model	are	performance	improvement	rates.	To	
agree	with	known	empirical	results,	performance	should	increase	exponentially	with	time.	
We	utilize	two	sets	of	mechanisms	from	design	to	construct	the	overall	model.	The	first	set,	
which	gives	rise	to	exponential	trends,	includes	growth	of	knowledge	‐	understanding	and	
operations	‐	using	combinatorial	analogical	transfer	aided	with	mutual	exchange	between	
the	two.	The	second	set,	which	gives	rise	to	variation	in	improvement	rates,	includes	
component	interactions	and	scaling	of	design	variables.	Since	the	goal	of	the	model	is	to	
develop	an	explanatory	and	quantitative	predictive	model,	while	modeling	these	
mechanisms	we	have,	where	necessary,	simplified	(removed	details)	and	utilized	
abstraction	to	keep	the	model	tractable.	
	
The	overall	architecture	of	the	model	is	shown	in	Figure	2.	Based	on	the	work	of	Vincenti	
(1990)	and	Mokyr	(2002)	that	we	discussed	earlier,	we	classify	scientific	and	technical	
knowledge	into	Understanding	and	Operations	regimes.	We	further	split	the	Operations	
regime	into	idea	and	artifact	sub‐regimes	where	non‐physical	representation	of	artifacts	
are	in	the	idea	sub‐regime.		The	idea	sub‐regime,	represented	as	an	ideas	pool,	consists	of	
individual	operating	ideas	(IOI).	The	IOI	(individual	operating	idea)	concept	is	an	
abstraction	and	generalizes	the	idea	of	operating	principle	introduced	by	Polyani	(1962)	
and	includes	any	ideas,	including	operating	principles,	invention	claims,	design	structures,	
component	integration	tricks,	trade	secrets	and	other	design	knowledge	that	lead	to	
performance	improvement	of	artifacts.	An	IOI	is	different	than	a	unit	of	understanding	
(UOU)	which	includes	scientific	principles,	and	factual	information.	An	example	of	a	unit	of	
understanding	(UOU)	is	the	principle	of	total	internal	reflection,	which	describes	how	a	
beam	of	light	undergoes	reflection	inside	a	dense	medium,	when	the	angle	of	incidence	is	
above	a	critical	value	(see	Fig.	3).	This	principle	accurately	describes	a	natural	effect,	but	it	
does	not	prescribe	how	we	can	use	it	to	transmit	information.	On	the	other	hand,	a	pair	of	
parallel	surfaces	(or	a	fiber)	enclosing	a	dense	medium	and	utilizing	the	principle	of	total	
internal	reflection	provides	a	mechanism	–	an	operating	principle	‐	to	make	a	ray	of	light	
travel	down	the	length	of	the	medium	(see	Fig.	3).	Such	a	mechanism	is	an	example	of	an	
IOI.	Unlike	artifacts,	which	belong	to	a	specific	technological	domain,	we	model	IOI	in	the	
ideas	(IOI)	pool	as	being	non‐domain	specific	and	available	to	all	technological	domains.	
For	instance,	the	operating	principle	of	total	internal	reflection	is	utilized	in	fiber	optic	
telecommunications,	fluorescent	microscopy,	and	fingerprinting,	very	distinct	
technological	domains.	In	the	idea	sub‐regime,	designers/inventors	source	existing	ideas	
(IOI)	using	analogical	transfer	and	combine	them	probabilistically	to	create	new	ideas	
(IOI).	Once	new	IOI	are	successfully	created	through	probabilistic	combination,	they	
become	part	of	the	IOI	pool,	thus	enlarging	the	number	of	ideas	(IOI)	in	the	pool	for	
combination.	It	is	important	to	clarify	that	model	considers	combinations	at	the	ideas	level	
rather	combination	of	components,	with	the	former	being	fundamental	and	allowing	
combination	of	ideas	from	different	fields	using	analogical	transfer.	
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Fig.	2:	Model	of	exchange	between	Understanding	and	Operations	regimes	and	
modulation	of	IOI	assimilation	by	interaction	(dJ)	and	scaling	(AJ)	parameters	of	
domain	J.		
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Total	internal	reflection	between	parallel	
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make	light	travel	longitudinally	(fiber	optics)	
 

Fig.	3	Examples	of	unit	of	understanding	(UOU)	and	incremental	operating	idea	(IOI)	
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We	model	growth	in	the	explanatory	reach	of	the	Understanding	regime	by	simulating	a	
similar	combinatorial	analogical	transfer	process.		The	Understanding	regime	is	
conceptualized	to	consist	of	units	of	understanding	(UOU).		The	units	of	understanding	
(UOU)	from	different	fields	within	the	understanding	regime	participate	to	create	a	new	
unit	of	understanding	(UOU)	that	potentially	(probabilistically)	has	a	greater	level	of	
explanatory	and	predictive	power.	Following	the	treatment	in	Axtell	et	al.	(2013),	we	
model	the	explanatory	and	predictive	power	of	a	field	of	Understanding	as	a	fitness	
parameter,	fi.	If	the	new	UOU	has	a	greater	fitness	value,	it	replaces	the	UOU	with	the	
smallest	fitness	value.		Since	our	primary	focus	is	on	performance	‐	the	output	of	the	
Operations	regime,	we	simulate	the	Understanding	regime	only	at	this	higher	abstraction	
level.				
	
Although	both	regimes	–	Understanding	and	Operations	–	evolve	independently,	they	
cannot	do	so	indefinitely.	We	model	the	de	Solla	Price	and	Gribbin	insights	by	having	each	
regime	act	as	a	“barrier‐breaker”	for	the	other	regime.	When	each	regime	hits	a	barrier,	the	
other	can	eventually	aid	in	breaking	the	barrier:	infusion	of	understanding	enables	creation	
of	important	IOI	in	the	Operations	regime;	and	infusion	of	new	operational	tools	enable	
new	discoveries	in	the	Understanding	regime.		
		
The	performances	of	the	artifacts	in	technological	domains	are	improved	by	a	series	of	
designs/inventions	(IOI)	over	time.	IOI	enable	designers	to	change	specific	components	in	
the	domain	artifact	leading	to	a	potential	improvement.	Following	McNerney	et	al.’s	
treatment,	the	IOI	in	question	is	assimilated	only	if	the	performance	of	the	artifact	overall	
improves.		
	
Another,	and	final,	factor	that	we	model	is	scaling,	a	property	inherent	in	the	physics	of	the	
design	of	the	artifact.5,6	The	successfully	assimilated	IOI,	which	we	refer	to	as	IOIS,	effect	
improvement	of	the	domain	artifact	by	enabling	favorable	change	of	a	relevant	design	
parameter.	The	design	parameter	is	increased	or	decreased	such	that	it	leads	to	improved	
performance7.	Scaling	refers	to	how	change	in	a	design	parameter	relates	to	relative	change	
in	the	performance	of	an	artifact.	The	formulation	we	use	in	the	model	is	that	relative	
performance	change	is	related	to	design	parameters	raised	to	some	power,	in	other	words	
scaled.	As	covered	in	section	2.1,	this	is	the	most	widely	used	functional	relationship	with	
decent	empirical	support	and	theoretical	justification	in	some	cases	(Barenblatt	1996).	

																																																								
5	Recall	that	the	performance	we	consider	in	this	paper	is	intensive,	e.g.,	energy	density,	
w/cm3.		
6	In	relations	to	artifacts	such	as	software,	physics	refers	to	the	mathematics	behind	the	
software.	
7	Taguchi	(1992)	noted	that	some	phenomena	tend	to	work	better	when	carried	out	at	a	
smaller	scale	(“smaller	is	better”),	while	other	are	better	at	larger	scale	(“larger	is	better”).	
Integrated	circuits,	for	example,	perform	better	as	dimensions	are	reduced,	since	smaller	
dimensions	lead	to	shorter	delays,	and	higher	density	of	transistors,	both	of	which	
contribute	towards	improved	computation	per	volume	or	cost.	
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3.2 Mathematical summary 
A	performance	(intensive)	metric	of	a	domain,	labeled	QJ,	is	a	function	of	a	set	of	design	
parameters	(s1,	s2,	s3)	of	a	domain	artifact	and	time	but	for	simplicity	here	we	consider	only	
a	single	parameter	(s).	The	design	parameter	is	changed	by	IOIs	(successfully	assimilated	
IOI	into	domain	artifacts),	which	in	turn	are	assimilated	from	IOIC	(number	of	accumulated	
operating	ideas	in	the	IOI	pool	shown	in	Figure	2).		IOIC	is	a	function	of	time.	Equations	
describing	these	nested	variables	in	logarithmic	form	are:	
	
	 ln	QJ	=	f1	(ln	s);	ln	s	=	f2	(ln	IOISC);	ln	IOISC=	f3	(ln	IOIC);	ln	IOIC		=	f4	(t)	 (3)	 	
	
Assuming	that	the	functions	are	continuous	and	all	dependence	is	through	the	named	
variables,	the	chain	rule	is	applied	and	yields	
	
	 d	lnQJ	/dt			=	d	lnQJ	/d	lns	∙	d	lns/d	lnIOISC	∙	d	lnIOISC	/d	lnIOIC		∙	d	lnIOIC	/dt	 (4)	 	
	
The	first	term	on	the	right	hand	side	represents	relative	impact	of	design	variable	change	
on	performance	change,	which	will	be	shown	in	section	4.5	to	be	equal	to	the	scaling	
parameter	(AJ)		when	QJ	follows	a	power	law	in	s:	d	lnQJ/d	lns	=	AJ.	The	second	term	is	the	
‘smaller‐is‐better/larger‐is‐better’	factor,	and	captures	the	notion	whether	a	design	
variable	has	to	be	increased	or	decreased	in	order	to	improve	performance.	We	capture	
this	dependence	using	an	abstraction	and	equate	d	lns/d	lnIOIsc	=+/‐1.	
 
	Thus,	equation	(4)	becomes		
	

d	lnQJ/dt	=	AJ	∙	(		±1)	∙	d	lnIOISC/d	lnIOIC	∙	d	lnIOIC	/dt	 	
	

(5)	
	

	

The	third	term	on	the	right	of	equation	(5)	represents	‘difficulty	of	implementing	ideas’	in	
specific	domains,	and	thus	relates	the	domain	specific	successful	IOISC	to	the	IOIC	in	the	
pool:	we	will	show	in	section	4.4	‐	following	McNerney	et	al.	‐	that	d	lnIOISC	/d	lnIOIC		=	1/dJ,	
where	dJ	is	the	interaction	parameter	introduced	by	McNerney	et	al.		Finally,	the	fourth	
term	represents	the	rate	of	idea	production.	K	=	d	lnIOIC/dt	is	arrived	at	by	a	simulation	of	
combinatorial	analogical	transfer	which	is	presented	in	the	first	(following)	section	of	the	
results.	

4. Results 

4.1 Overall IOI simulation  
As	noted	in	section	3.1,	we	model	the	IOI	as	resulting	from	combining	knowledge	from	
prior	IOI	by	probabilistic	analogical	transfer.	Fig	4a	schematically	represents	combination	
of	IOI,	in	which	specific	IOI	a	and	b	combine	to	create	IOI	d	with	a	probability,	PIOI.	If	this	
combination	attempt	succeeds,	the	newly	created	IOI	d	then	is	added	to	the	pool	of	IOI	(Fig	
4b).	In	subsequent	time	steps,	IOI	d	can	attempt	to	combine	with	another	specific	IOI	in	the	
pool,	such	as	IOI	c,	to	probabilistically	create	a	more	advanced	IOI	e.	As	combination	
advances,	the	cumulative	number	of	individual	operating	ideas,	IOIC	grows.	We	further	
make	the	distinction	between	derived	IOI	and	basic	IOI,	which	we	label	as	IOI0.	IOI0	are	
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fundamental	IOI,	which	first	introduce	a	natural	effect	into	an	operational	principle	to	
achieve	some	purpose.	The	example	(described	in	section	3.1)	of	a	pair	of	close	parallel	
surfaces	(or	a	fiber)	enclosing	a	dense	medium	and	utilizing	principle	of	total	internal	
reflection	to	transmit	a	beam	of	light	longitudinally	can	be	viewed	as	an	example	of	an	IOI0.		
In	contrast,	derived	IOI,	just	as	the	term	suggests,	are	obtained	through	combination	of	two	
IOI0,	or	between	an	IOI0	and	a	derived	IOI	or	between	two	derived	IOI.	In	this	sense,	IOI	a,	b,	
and	c	in	the	figure	represent	IOI0	and	IOI	d	and	e,	derived	IOI.	
	

In	one	run	of	the	simulation,	we	start	with	the	initial	number	of	basic	individual	operating	
ideas,	IOI0.	At	each	time	step,	the	maximum	number	of	combinations	we	allow	to	be	created	
is	equal	to	half	the	number	of	total	IOI	available.	The	intention	is	to	allow	each	operating	
idea	to	combine	with	another	operating	idea	once	per	time	step	on	average.	Figure	5	shows	
results	from	a	simulation	run	starting	with	10	basic	IOI	and	a	probability	of	combination,	
PIOI,	equal	to	0.25.	Figures	5a	and	5b	with	time	steps	on	the	X‐axis	and	the	cumulative	
number	of	operating	ideas,	IOIC	on	the	Y‐axis	show	that	the	cumulative	number	of	
operating	ideas,	IOIC,	grows	exponentially	with	time	at	an	improvement	rate	(K)	of	0.116.		

For	this	simplified	case,	the	rate	of	growth	of	IOI,	K,	can	be	mathematically	shown	to	be	
equal	to	ln(1	+	PIOI	/2),	=0.118	which	can	be	easily	derived	as	follows:	

	 At	in	a	time	step	t,	number	of	IOI	newly	created	=	PIOI	∙	IOIC(t)/2	 (6)	 	
	

	

	
	
	

	
		
	
	

	
	

Fig.	4:	Combination	of	individual	operating	ideas		a)	basic	and	derived	IOI		b)	
accumulation	of	IOI	through	feedback	
 

a	+	b	 d	
	

PIOI 

IOI	pool 
Basic	IOI:	a,	b,	c	
Derived	IOI:	d,	e	
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   IOIC	     IOIC 

 

Fig.	5:	Growth	of	IOIC	over	time:	initial	IOI0	=	10,	probability	of	combination,	PIOI	=	
0.25:	(a)	linear	Y‐axis	(b)	logarithmic	Y‐axis.
	

IOIC(t+1)	=	IOIC(t)	+	PIOI	∙	IOIC(t)/2	=	IOIC(t)	∙	(1	+	PIOI	/2)	 (7)	

Ratio	of	IOIC	between	consecutive	time	steps,	r	=	IOIC(t+1)/IOIC(t)	=	(1	+	PIOI	/2)	 (8)	

Then,	in	general,	IOIc(t)	can	be	written	in	terms	of	an	initial	IOI0	and	ratio,	r	and	time	step,	t;	
the	expression	can	be	stated	in	an	exponential	form.	

IOIC(t)	=	IOI0		r	t	=	IOI0	exp	{	lnr	∙	t}=	IOI0	∙	exp	{	ln(1+	PIOI	/2)	∙	t	}=	IOI0	∙	exp	{	k∙t}			 (9)	

Where,	the	rate	of	growth	of	IOIC(t),		

K	=	ln(1	+	PIOI	/2)	 	 	 (10)	

For	very	small	values	of	PIOI,	

K	≈	PIOI	/2	 	 	 	 (11)	

The	simulation	results	to	this	point	assume	that	indefinitely	large	numbers	of	operating	
ideas,	IOI,	can	be	created	out	of	few	basic	IOI.	This	is	because	the	model	assumes	that	the	
same	operating	ideas	can	be	repeatedly	used	to	create	new	IOI	without	limit.	(For	example,	
recombining	(a,b)	with	a,	then	with	b	would	give	new	operating	IOI	(((a,b),a),b)	and	
eventually	an	arbitrarily	large	number	of	a,	b	pairs.	Indefinite	multiple	uses	of	the	same	
basic	idea	to	create	innumerable	IOI	does	not	appear	to	be	realistic.	In	order	to	better	
reflect	this	intuition,	we	introduce	a	constraint	that	any	derived	IOI	can	utilize	an	IOI0	only	
once.	The	constraint	operationalizes	the	notion	that	counting	repetitious	use	of	basic	IOI	as	
new	designs	that	potentially	improve	performance	is	unrealistic.	According	to	this	
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constraint,	derived	IOI	((a,b),c)	in	Figure	4	would	be	allowed,	but	not	((a,b),b).	Employing	
this	constraint,	the	simulation	yields	the	results	in	Fig.	6a,	a	semi‐log	graph,	showing	the	
cumulative	number	of	IOI	initially	growing	exponentially	with	time.	However,	later	on	the	
curve	bends	over	and	hits	a	limit,	demonstrating	that	all	combination	possibilities	have	
been	used	up,	and	the	pool	of	operating	ideas	stagnates	which	is	also	shown	on	the	linear	
plot	(Figure	6b)	resembling	a	well‐known	“S	curve”.	

    IOIC 

a)  

   IOIC 

b) 

Fig.	6:	Growth	of	cumulative	IOIC	(t)	after	implementing	the	constraint	that	IOI0	can	
be	used	only	once	by	any	specific	derived	IOIs;	a)	semi‐log	plot	and	b)	linear	plot.	

	

The	maximum	number	of	combination	possibilities,	which	is	a	function	of	IOI0	in	the	pool,	
defines	the	limit.	This	limit,	or	maximum	number	of	combination	possibilities,	is	given	by	a	
simple	combinatorics	equation	(Cameron	1995):	

	 ௫ܫܱܫ ൌ 	2ூைூబ െ 1	 	 	 (12)	

Equation	12	entails	that	the	limit	increases	rapidly	as	IOI0	increases,	due	to	its	geometric	
dependence	on	IOI0.	For	example,	for	IOI0	equal	to	5,	10,	15,	and	20	the	corresponding	
limits	are	31,	1023	(Figure	6),	32767,	and	1,048575	combination	possibilities.	

A	natural	question	that	arises	from	this	result	is	what	might	determine	the	IOI0	over	time?	
We	postulate	a	role	for	Understanding	in	this	regard	and	we	first	briefly	look	at	how	
Understanding	evolves	over	time.		
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4.2	Combinatoric simulations for Understanding regime 
Just	like	the	Operations	regime,	we	model	the	Understanding	regime	to	also	grow	through	a	
probabilistic	analogical	transfer	process,	in	which	units	of	understanding	combine	to	create	
new	units	of	understanding.	In	this	model,	we	envision	that	the	Understanding	regime	is	
composed	of	many	fields,	with	each	field	having	an	explanatory	reach.	Using	a	treatment	
similar	to	the	one	used	by	Axtell	et	al.	(2013),	the	explanatory	reach	of	a	field	may	be	
viewed	as	a	fitness	value	of	the	theoretical	understanding	of	that	field,	which	we	denote	
with	fi.	Following	Axtell	et	al.,	when	units	from	two	fields	with	fitness	values,	f1	and	f2,	
combine,	the	fitness	of	the	resulting	unit	is	randomly	chosen	from	a	triangular	distribution	
with	the	base	or	X‐axis	denoting	the	fitness	values	ranging	from	0	to	f1	+	f2,	and	the	apex	
representing	the	maximum	value	of	the	probability	distribution	function,	given	by	2/(f1	+	
f2).	See	Fig	7a.	If	the	resulting	fitness	of	the	new	understanding	unit	is	higher	than	the	
fitness	of	either	of	the	two	combining	units,	the	new	understanding	unit	replaces	the	unit	
whose	fitness	is	the	smallest	among	the	three.	We	assume	the	cumulative	fitness	of	the	
Understanding	regime	(FU)	as	a	whole	to	be	equal	to	the	sum	of	the	individual	fitness	value	
of	each	field.		
	
Our	simulation	assumes	10	fields	with	starting	fitness	values	ranging	from	0	to	1,	which	are	
randomly	assigned.	Consequently,	the	average	cumulative	fitness	(FU)	value	is	initially	5.	As	
the	simulation	proceeds,	fitness	values	of	the	10	fields	grow	independently,	and	as	a	result,	
the	cumulative	fitness	of	the	Understanding	regime	grows.	Fig.7b	shows	results	from	a	
simulation	run	exhibiting	roughly	exponential	growth	of	cumulative	fitness	over	time.	
Thus,	a	simple	model	for	growth	of	the	Understanding	regime	is	also	exponential.	However,	
as	with	the	Operations	regime,	unlimited	growth	by	simple	combination	of	scientific	
theories	is	not	realistic.	
	
The	Understanding	regime	also	cannot	progress	by	simple	combination	of	existing	
understanding	but	instead	experiences	a	limit	that	we	envision	as	depending	upon	
availability	of	operational	(technological)	tools	available	for	testing	scientific	hypotheses	
and	for	discovering	new	effects.	We	express	this	dependence	through	an	equation	which	
expresses	the	maximum	cumulative	fitness	at	any	time,	maxFU(t),	as	simply	proportional	to	
the	IOI	existing	at	that	time:	
	
maxFU(t)	=	ZF	∙	IOIC(t)	 	 	 (13)		
	
Where	IOIC	thus	represents	an	approximation	for	the	effectiveness	of	available	operational	
tools,	and	ZF	is	a	constant	of	proportionality.		This	equation	captures	the	concept	first	
suggested	by	Price	that	the	extent	(or	scope)	of	explanatory	reach	of	the	Understanding	
regime	is	dependent	upon	what	experimental	tools	are	available	for	scientists	and	
researchers.	It	also	recognizes	in	the	terms	of	our	model	that	these	tools	are	essentially	
operational	artifacts.	
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Fig. 7: a) Triangular distribution of possible fitness values that can be assumed by a new unit 
of understanding b) Growth of FU (cumulative fitness of Understanding regime) over time.	

 

4.3 Exchanges between Understanding and Operations regimes  
	
As	discussed	in	section	3.1,	prior	qualitative	work	indicates	that	the	interaction	of	
Understanding	and	Operations	is	probably	best	modeled	by	assuming	mutual	beneficial	
interaction.	In	our	model,	we	capture	this	enabling	exchange	from	the	Understanding	to	the	
Operations	regime	using	a	simple	mathematical	criterion:		
	
FU(t)/FU(t_prev)	≥	cutoff_ratio	(R)	 	 (14)	
	
Where,	FU(t)	and	FU(t_prev)	represent	cumulative	fitness	values	at	time	step	t	and	the	most	
recent	time	step,	t_prev,	at	which	a	IOI0	had	been	introduced.	
	
This	criterion	states	that	when	cumulative	fitness	of	the	Understanding	regime	grows	by	
some	multiple	(R)	from	the	time	when	the	last	IOI0	was	invented,	understanding	has	
improved	enough	to	generate	a	new	IOI0,	which	becomes	available	for	combinations	with	
all	existing	IOI.	The	threshold	ratio,	R,	determines	the	frequency	at	which	IOI0	are	created.	
	

We	now	show	results	from	a	simulation	including	the	exchange	and	limits	on	IOI0.	In	the	
simulation,	we	study	how	synergistic	exchange	from	Understanding	influences	the	rate	of	
growth	of	IOI	in	the	Operations	regime,	including	escape	from	stagnation.	We	focus	
particularly	on	two	variables,	namely,	the	initial	number	of	IOI0	in	the	Operations	regime	
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and	the	threshold	ratio	R	for	creation	of	new	IOI0.	Other	pertinent	variables	are	the	
probability	of	combination,	PIOI,	the	number	of	attempts	per	time	step	and	the	number	of	
time	steps	per	year	and	are	not	varied	in	this	set	of	results.		
	
For	this	simulation	study,	Table	(1)	presents	the	parameter	values	for	IOI0	(column	3)	and	
the	threshold	ratios	of	cumulative	fitness	(column	4)	that	are	used.	As	an	example,	5B3R	
starts	with	IOI0	of	5	and	a	new	IOI0	is	created	when	cumulative	fitness	grows	by	a	factor	of	
3.	Both	the	initial	number	of	IOI0	and	the	threshold	ratios	of	cumulative	fitness	are	set	at	3	
different	values,	giving	a	total	set	of	9	parameter	combinations.	For	all	9	runs,	the	
probability	for	combination	is	kept	constant	at	0.25,	and	we	assume	one	attempt	per	yearly	
time	step.	
	

Table	1:	Simulation	study:	Parameter	values	of	IOI0 and	R (threshold	ratios	of	cumulative	
fitness	of	Understanding)	for	the	study.	Results:	K	is	the	slope	fitting	the	simulation	results	
to	an	exponential	with	R2	for	the	fit	(also	shown).	Other	parameters,	such	as	probability	of	
combination,	PIOI	=	0.25,	are	kept	constant.	
	
	 Simulation		

Run	
Initial	
IOI0	

Threshold	
ratio		
R	

Simulation
avg.	K	(±	2	std	dev)8	

	

R2	 K =
	ln(1+	PIOI	/2)	

1	 5B1.5R	 5	 1.5 0.123	(±	0.011) 0.998	 0.118
2	 	5B3R	 5	 3.0 0.055	(±	0.019) 0.959	 0.118
3	 	5B5R	 5	 5.0 0.039	(±	0.007) 0.943	 0.118
4	 10B1.5R	 10	 1.5 0.122	(±	0.011) 0.997	 0.118
5	 10B3R	 10	 3.0 0.115	(±	0.007) 0.998	 0.118
6	 10B5R	 10	 5.0 0.117	(±	0.007) 0.983	 0.118
7	 	20B1.5R	 20	 1.5 0.116 (±	0.007) 0.998	 0.118
8	 	20B3R	 20	 3.0 0.116	(±	0.009) 0.998	 0.118
9	 	20B5R	 20	 5.0 0.119	(±	0.016) 0.998	 0.118

	
	

																																																								
8	The	standard	deviation	was	estimated	from	seven	repetitions	for	each	simulation	run.	
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Fig. 8: Growth of IOIc; initial IOI0 and R (cumulative fitness ratio) for each run are shown in the legend 

for each run; e.g., 10B5R represents 10 IOI0 and fitness ratio of 5. 

	
	
The	simulation	results	in	Fig.	8	shows	the	temporal	growth	of	IOIC	in	the	Operations	regime	
for	the	nine	runs	shown	in	Table	1.	Runs	5B3R	and	5B5R	clearly	stand	out:	they	have	a	
bumpy	growth	since	they	encounter	periods	of	stagnation	multiple	times,	as	they	evolve.	
Moreover,	their	effective	rates	of	growth	are	meager,	standing	only	at	0.055	and	0.04,	
which	is	much	lower	than	0.118,	the	rate	given	by	Equation	10	{ln	(1+	PIOI	/2)}.		Columns	5,	
6,	and	7	list	the	K,	R2,	and	K	calculated	using	ln(1+	PIOI	/2)	respectively.	The	small	deviations	
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from	equation	10	found	for	the	other	7	runs	are	within	the	2‐sigma	estimated	from	
multiple	simulation	repetitions	for	each	run.		
	
Both	5B3R	and	5B5R	start	with	low	initial	IOI0	of	5	and	have	higher	cumulative	fitness	
threshold	ratios	(R)	for	infusion	of	new	IOI0.	Low	initial	IOI0	implies	that	the	Operations	
regime	has	a	low	number	of	combinatorial	possibilities	of	IOI	to	start	with.	Additionally,	
since	new	IOI0	are	not	coming	fast	enough	to	push	the	frontier	of	combinatorial	
possibilities	of	IOI	far	enough,	the	Operations	regime	quickly	exhausts	the	possibilities	and	
again	stagnates.	Run5B5R	stagnates	for	longer	periods	compared	to	5B3R	since	it	has	a	
higher	threshold	ratio	(R)	for	infusion	of	a	new	IOI0	and	thus	slower	progress.	The	
Operations	regime	cannot	escape	the	stagnation	until	another	IOI0	is	created	with	infusion	
of	new	understanding.	It	is	clear	from	the	curves	that	this	pattern	repeats	itself	time	after	
time.		
	
Other	simulation	runs,	except	run	10B5R	grow	exponentially	and	smoothly	and	their	rates	
are	consistent	with	the	theoretical	value	calculated	using	ln(1+	PIOI	/2),	0.1178.		These	
curves	have	either	high	enough	IOI0	to	start	with	or	fast	infusion	of	IOI0,	or	both.	Run	
5B1.5R,	for	example,	starts	with	a	low	number	of	IOI0	but	has	fast	infusion	of	IOI0,	since	the	
threshold	ratio	R	is	only	1.5.	On	the	other	hand,	run	20B5R	has	slow	infusion	of	IOI0	(high	
R),	but	starts	with	high	initial	IOI0.	
	
These	runs	do	not	exhibit	stagnation	for	two	reasons.	The	first	reason	is	that	the	frontier	of	
combinatorial	possibilities	for	some	runs	is	very	far	from	the	number	of	realized	IOI	at	a	
given	time	step.	For	example,	run	20B5R	has	over	a	million	possibilities	when	it	starts	with	
20	IOI0.	The	second	reason	is	that	the	frontier	of	the	combinatorial	possibilities	keeps	on	
moving	further	away	as	IOIc	increases.	Run	5B1.5R,	for	example,	starts	with	5	IOI0,	and	yet	
it	never	experiences	stagnation	due	to	fast	infusion	of	IOI0	(low	R)	that	push	the	frontier	of	
combinatorial	possibilities.		The	growth	of	IOIC	is	also	free	of	stagnation	for	runs	(e.g.,	such	
as	Run10B3R)	with	medium	number	of	initial	IOI0	and	medium	rate	of	infusion	of	IOI0	
(medium	R).		This	is	true	because	both	factors	in	combination	ensure	that	frontier	of	
combinatorial	possibilities	is	far	enough	to	start	with,	and	the	frontier	continues	to	move	
rapidly	enough	with	time.	
	
Run	10B5R	exhibits	somewhat	unusual	behavior.	Although	it	grows	smoothly	at	the	
beginning	for	quite	some	time,	it	experiences	stagnation	later	on.	This	is	because	the	
frontier	of	combinatorial	possibilities	is	far	enough	away	to	sustain	steady	growth	early	on.	
Later,	the	Operations	regime	exhausts	the	combinatorial	possibilities	before	new	IOI0	
arrive.	However,	once	a	new	IOI0	arrives,	it	jumpstarts	again	but	it	briefly	halts	at	each	new	
limit	demonstrating	the	value	of	frequent	interchange	between	Understanding	and	
Operations	in	this	simulation9.	
	
																																																								
9	The	simulations	are	based	upon	infusion	of	IOI0	depending	upon	a	ratio	(R)	of	growth	in	
cumulative	understanding,	but	similar	results	are	found	with	assuming	a	model	of	
difference	in	FU.	
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We	have	seen	that	a	combinatorial	process	combined	with	synergistic	exchange	between	
Understanding	and	Operations	leads	to	an	exponentially	growing	pool	of	operating	ideas,	
IOIC.	This	growth	is	described	by	an	exponential	function:	
	

ሻݐሺܫܱܫ ൌ 	 ሻݐሺܫܱܫ expሼܭሺݐ െ 		ሻሽݐ (15A)	 	
	

	 ܭ ൌ 	
ௗ	ூைூ

ௗ௧
		 	 	 	 (15B)	

	
Where,	K	=	the	effective	rate	of	growth	of	IOIC,	IOI0(t0)	=	the	number	of	initial	basic	IOI,	t	=	
time,	t0	=	initial	time.	
	
Our	overall	model	(Section	3,	Figure	2)	envisages	that	this	exponentially	growing	pool	of	
operating	ideas,	IOIC,	provides	the	source	for	the	exponential	growth	of	performance	of	
technological	domains.	How	does	this	exponential	growth	of	IOIC	result	in	performance	
improvement	and	what	accounts	for	the	variation	in	rates	of	performance	improvement	
across	technological	domains?	

4.4 Modeling interaction differences among domains 
As	explained	in	section	3,	two	factors	potentially	responsible	for	modulating	the	
exponential	growth	of	operating	ideas	as	they	are	integrated	into	technological	domains	
are	the	domain	interactions	and	scaling	of	relevant	design	variables.	We	consider	domain	
interactions	first	following	the	work	of	McNerney	et	al.	(2011)	who	modeled	how	
interactions	in	processes	affect	unit	cost.	We	build	on	their	mathematical	treatment	to	
analyze	the	effect	of	interactions	between	components	upon	integrating	an	IOI	into	an	
artifact	in	a	domain,	which	in	turn	improves	the	artifact’s	performance.	Figure	9a	shows	a	
simplified	schematic	of	an	artifact	in	a	technological	domain	that	has	three	components	
(1,2,3)	with	interaction	being	depicted	by	out‐going	arrows,	representing	influence,	from	a	
component	to	other	components,	including	itself.	The	outgoing	arrows	are	referred	to	as	
out‐links.	The	number	of	out‐links,	d,	from	a	component	provides	a	measure	of	its	
interaction	level,	and	has	value	of	1	or	greater	as	McNerney	et	al.	assume	each	component	
at	least	affects	itself.	For	simplicity,	Figure	9a	shows	each	component	with	two	out‐links,	to	
itself	and	to	another	component.	We	represent	an	instance	of	an	attempt	being	made	to	
improve	the	performance	of	component	2	by	an	IOI	being	inserted.	Since	component	2	
interacts	with	itself	and	another	component,	the	performance	of	the	interacting	component	
is	also	changed	by	the	insertion	but	in	a	fashion	described	probabilistically.	The	
performance	improvement	attempt	is	accepted,	only	if	the	performance	of	the	artifact	as	a	
whole	improves.	If	that	does	occur,	we	follow	McNerney	et	al.	and	consider	the	interactions	
being	successfully	resolved	to	improve	the	performance.	
	
For	a	simplified	artifact	with	d	number	of	out‐links	for	each	component	(d=2	in	Fig.	9a),	
McNerney	et.	al.’s	treatment	(2011)	for	unit	cost	results	in	the	following	relationship:	
	
dC/dm	=	‐	B	∙	Cd+1		 	 	 (16)	
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Where,	C	=	unit	cost	normalized	with	respect	to	initial	cost10,	m	=	number	of	attempts,	d=	
number	of	out‐links,	B	=	constant	
	
This	equation	states	that	the	level	of	interaction	inherent	in	the	domain	artifact	influences	
the	rate	of	unit	cost	reduction.	We	adapt	this	equation	for	our	analysis	in	the	following	
manner.	We	interpret	the	number	of	attempts	as	IOIc	since	the	number	of	IOI	determines	
the	attempts	(at	each	attempt	an	IOI	is	being	introduced	into	an	artifact	to	make	a	design	
change).	Secondly,	cost	reduction	is	inversely	related	to	performance	improvement,	such	as	
in	a	typical	metric	kWh/$.11	With	these	extensions	of	McNerney	et	al.	equation	16	can	be	
re‐written	as:	
	
d(Q)/d	IOIc	=	B	∙	Q	‐(d‐1)		 	 (17)	
	
Where,	Q	=	performance	
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Fig. 9: Interactions in an artifact; a) illustration of interactions as out‐links b) sample space of 
probabilities for unit cost . 

	
Since	as	shown	in	Equations	4	and	5,	successfully	resolved	operating	ideas	in	a	domain,	
IOISC,	are	the	source	for	its	performance	improvement,	we	replace	performance	Q	of	a	
domain	with	IOISC.	An	IOI	is	considered	a	successful	attempt	if	the	interaction	resolution	

																																																								
10	The	normalized	unit	cost	is	1	or	less	so	increases	in	d	in	equation	16	result	in	less	
improvement	per	attempt.	
11	The	concept	can	be	further	generalized	to	include	performance	metrics	which	involve	
other	resource	constraints	such	as	volume,	mass,	and	time,	instead	of	cost	(e.g.,	kWh/m3).	
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leads	to	net	performance	improvement	of	the	artifact,	and	the	count	of	successful	IOI	is	
denoted	by	IOISC.		The	modified	equation	shown	below	states	that	the	interaction	level,	d,	
has	a	retarding	effect	on	the	growth	of	IOISC	in	a	domain.		
	
d(IOISc)/dIOIc	=	B	∙	IOISc	‐(d‐1)			 	 (18)	
	
We	solve	the	differential	equation	by	separating	the	variables	(IOISC	on	the	left	and	IOIC	on	
the	right),	and	integrating	both	sides	using	dummy	variables,	and	express	IOISC	explicitly.		
The	integration	limits	are:	a)	for	the	right	side,	0	to	IOIC,	b)	for	the	left	side,	1	to	IOISC.	The	
result	is:	
	
ௌܫܱܫ ൌ 	 ሺܤ ∙ ݀ ∙ ܫܱܫ  1ሻଵ/ 		 (19)	
	
Since	B	and	d	are	close	to	unity,	and	IOIc	>>	1,	we	can	ignore	1	in	the	brackets.	Since	our	
goal	is	to	determine	{d	lnIOISC/d	lnIOIC},	we	take	the	natural	log	of	both	sides	and	
differentiate	it	with	respect	to	ln	IOIC,	resulting	in	the	following	expression	which	will	be	
substituted	into	equation	5	in	section	4.6:		
	
d	lnIOIsc	/	d	lnIOIc		=	1/dJ	 	 	 (20)	 	 	
	 	 	 	 	

4.5 Performance models ‐ scaling of design variables 
Our	research	question	is	concerned	with	intensive	technological	performance	of	domain	
artifacts.	The	intensive	technological	performance	represents	an	innate	performance	
characteristic	of	an	artifact.	We	operationalize	the	notion	of	intensive	performance	by	
dividing	desirable	artifact	outputs	with	resource	constraints	(e.g.,	mass,	volume,	time,	cost).	
An	intensive	performance	metric	for	batteries	is	energy	density,	kWh/m3.	We	now	consider	
three	examples	of	relationships	between	intensive	performance	and	design	variables.	

4.5.1 Selected examples 
We	first	consider	blast	furnaces	used	in	the	manufacturing	of	steel	as	representative	of	
reaction	vessels	of	various	kinds.	Widely	used	performance	attributes	for	a	blast	furnace	
are	capacity	and	cost,	where	cost	can	be	considered	the	resource	constraint.	So,	an	
intensive	performance	metric	can	be	defined	as	capacity	(output	per	hour	or	day	typically)	
per	unit	cost.	The	capacity	of	a	reaction	vessel	is	proportional	to	its	volume	while	its	cost	is	
primarily	proportional	to	surface	area	(Lipsey	et	al.	2005).	The	following	dimensional	
analysis	shows	that	following	these	simplistic	assumptions,	intensive	performance	of	a	
reaction	vessel	is	linearly	proportional	to	size,	s.	
	
QRV	=	capacity/cost	of	reaction	vessel	=	s3/s2=	s1		 	 (21)	
	
Gold	(1974)	has	empirically	shown	that	the	cost	of	a	blast	furnace	goes	up	by	60	percent	
when	the	capacity	is	doubled.	Intensive	performance	QRV	using	this	empirical	finding	goes	
up	by	1.25	(=2/1.6)	when	s3	doubles,	and	thus	s	goes	up	by	1.26	(=2.333)	closely	agreeing	
with	the	simply	derived	equation	21.		
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A	second	example	we	consider	is	specific	power	output	from	internal	combustion	(and	
other	heat)	engines.	Power	output	(kW)	is	proportional	to	volume	occupied	by	the	
combustion	chamber	minus	the	heat	loss	from	the	engine,	which	in	turn	is	proportional	to	
the	engine’s	surface	area.	The	power,	then,	is:	
	
	power	=	A	s3	–B	s2	;	B/A	<	1			 	 (22)	
	
Where	A	and	B	are	constants	for	power	generation	and	heat	loss	respectively.		
QIC	=	specific	power		α		power/volume	of	engine;	thus	specific	power	is	
	
=	(A	s3	–Bs2)/s3	=	A	–	B/s	 	 (23)	
	
Equation	23	indicates	that,	similar	to	reaction	vessels,	specific	power	output	of	IC	engines	
increases	with	size	so	both	are	“larger	is	better”	artifacts”.	For	small	values	of	B/As,	specific	
power	increases	approximately	linearly	with	s.	For	larger	values	of	s,	the	increase	is	less	
than	linear	in	s.	
		
As	a	final	example,	we	consider	information	technologies,	whose	performance	
improvement	ranks	amongst	the	highest.	Several	modern	information	technologies	depend	
upon	integrated	circuit	(IC)	chips.	Electronic	computers	have	been	improving	performance	
by	reducing	the	feature	sizes	of	transistors	in	IC	chips	for	microprocessors.	The	number	of	
computations	per	second	per	unit	volume,	an	intensive	measure	of	performance,	depends	
upon	frequency	and	the	number	of	transistors	in	a	unit	volume.	Frequency	is	inversely	
proportional	to	the	linear	dimension	of	a	feature,	s,	and	the	number	of	transistors	per	unit	
area	is	inversely	proportional	to	area	of	the	feature.	Thus,	
	
Computation	per	sec	per	cc	=	1/s	∙	1/s2	=	s‐3		 (24)	
	
The	dimensional	analysis	indicates	that	computations	per	second	increases	rapidly	for	a	
decrease	in	a	linear	dimension	of	a	feature.	This	is	due	to	the	cubic	(or	higher)12	
dependence	of	computations	per	second	on	feature	size.		The	negative	sign	captures	the	
fact	that	reduction	of	the	design	variable	increases	performance	–	smaller	is	better	for	this	
artifact.	
	

4.5.2 Generalization of scaling of design variables 
The	three	examples	we	have	presented	illustrate	the	notion	that	intensive	performance	
improved	by	different	degrees	depending	how	the	design	variables	are	scaled.	In	the	first	
two	cases,	a	10	percent	increase	in	a	design	variable	will	improve	performance	by	10	
percent	or	less.	However,	in	the	case	of	computations,	for	the	same	10	percent	change	in	
design	variable	(feature	size),	the	performance	would	improve	by	over	33	percent.	This	
dependence	is	modeled	as	a	power‐law13:	

																																																								
12	If	the	vertical	dimension	also	decreases	over	time	as	the	feature	size	decreases,	a	higher	
power‐perhaps	approaching	4	‐	would	apply.	
13	The	engine	example	demonstrates	that	this	is	an	approximation	in	many	cases.	
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			 	ܳ ൌ 	 	ݏ 	 (25)	 	 	 ln	QJ	=	AJ	ln	s		 (26)	 	 	
	

d	ln	QJ/d	ln	s	=	AJ	 (27)	
	

Where,	AJ	is	the	scaling	factor	for	domain	J,	s	is	the	design	variable.		
 

4.6 Bringing all elements together 
We	now	bring	the	results	for	rate	of	IOISC	growth	and	influence	of	interaction	and	scaling	
together.		For	the	reader’s	convenience,	we	reproduce	equation	4	here,	and	substitute	the	
results	for	the	four	factors:	
	
	 d	lnQJ/dt	=	d	lnQJ/d	lns		∙		d	lns/d	lnIOISC		∙		d	lnIOISC/d	lnIOIC	∙	d	lnIOIC/dt	 (4)	
	
Substituting	the	results	from	equations	27,	20,	and	15B	for	the	first,	third	and	fourth	terms,	
±1	for	the	second	term,	and	then	rearranging,	we	get:	
	
	
ܭ ൌ 	

d	ln ܳ
ݐ݀

ൌ ሺ∓1ሻ	ܣ 			
1
݀

ܭ 	
(28)	

		
Equation	28	represents	the	overall	model	of	the	annual	rate	of	improvement	for	domain	J.	
According	to	this	equation,	KJ,	the	annual	rate	of	improvement	of	domain	J	depends	upon	K,	
the	exponential	rate	at	which	the	IOIC	pool	increases	in	size.	K	is	then	modulated	by	domain	
specific	parameters,	dJ	(interaction)	inversely	and	AJ	(scaling)	proportionally	to	result	in	a	
domain	specific	rate	of	 improvement	KJ.	The	minus	sign	is	converted	into	positive	one	by	
negative	sign	of	AJ	(for	those	cases	where	smaller	is	better).	One	observation	to	note	is	that	
AJ	and	 dJ	 are	 constants	 for	 a	 given	 domain,	 thus	 resulting	 in	 a	 time	 invariant	 rate	 (or	 a	
simple	exponential)	for	a	domain.	

5. Discussion 

The	goal	of	this	paper	was	to	develop	a	mathematical	model	that	utilizes	mechanisms	in	the	
design/invention	process	to	examine	the	nature	of	technological	performance	
improvement	trends.	The	exploration	has	utilized	simulation	to	gain	insight	into	a	
combinatorial	process	based	upon	analogical	transfer	and	Understanding	/Operations	
exchange	and	quantitatively	modeled	interactions	and	scaling.	In	this	section,	we	first	
briefly	review	the	consistencies	of	the	model	with	empirical	results	(and	what	is	known	
about	technological	change).	All	empirical	results	we	are	aware	of	are	found	to	support	the	
model.	We	then	consider	the	as	yet	untested	predictions	from	the	model	as	well	as	the	
assumptions	made	in	the	model.	
	
According	to	the	model,	the	exponential	nature	of	performance	improvement	for	all	
technological	domains	arises	in	the	idea	realm	of	the	operational	knowledge	regime,	where	
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new	inventive	ideas	are	created	using	combinatorial	analogical	transfer	of	existing	ideas,	
which,	in	turn,	become	the	building	blocks	for	future	inventive	ideas.	We	emphasize	that	
the	combinations	modeled	are	occurring	at	the	idea	level,	although	combinations	can	also	
take	place	between	components.	As	noted	in	section	3.1,	we	make	this	distinction	as	the	
former	is	much	more	pervasive	and	allows	combination	of	ideas	from	different	fields;	
however,	it	is	likely	that	some	ideas	cannot	be	combined	and	this	is	treated	
probabilistically	since	many	combination	attempts	fail.	The	model	demonstrates	this	
incessant	cumulative	combinatorial	aspect	of	knowledge	in	both	the	Understanding	and	the	
Operations	regimes	manifests	as	exponential	trends.	The	combinatorial	model	is	simple	but	
it	leads	naturally	to	the	exponential	behavior	with	time	that	has	only	been	obtained	
previously	by	Axtell	et	al.	in	a	model	that	went	beyond	performance	to	diffusion	over	a	set	
of	agents.	Since	such	exponential	behavior	with	time	is	one	of	the	most	widely	noted	
behaviors	of	technical	performance	(Moore	1965,	Koh	and	Magee	2006,	2008,	Nagy	et	al.	
2013,	Magee	et.	a.	2014),	the	combinatoric	model	enacting	analogical	transfer	that	was	
developed	in	the	current	paper	is	clearly	supported	by	what	is	known	empirically	about	
performance	trends	with	time.	
	
The	Operations	and	the	Understanding	regimes	can	improve	independently	in	the	model	
but	not	indefinitely.	How	long	the	Operations	regime	can	improve	depends	in	the	model	
upon	the	size	of	the	technological	possibility	space,	which	according	to	the	model	is	
dependent	on	the	number	of	basic	IOI,	fundamental	operational	principles,	existing.	The	
Understanding	regime	can	also	experience	stagnation,	but	this	happens	when	the	
operational	tools	that	scientists	and	researchers	use	for	discovery	and	testing	hypotheses	
are	not	adequate.	The	Operations	regime	comes	to	its	rescue	by	providing	these	
operational	tools	in	form	of	empirical	methods,	tools	and	instruments	(increased	numbers	
of	individual	operating	ideas),	which	greatly	enhances	the	scientists	ability	to	discover	and	
test,	and	thus	further	push	the	limits	of	understanding	in	the	manner	suggested	by	Price	
(1983),	Gribbin(2002)	and	in	the	following	quote	from	Toynbee	(1962).		
	

Physical Science and Industrialism may be conceived as a pair of dancers both of whom 
know their steps and have an ear for the rhythm of the music. If the partner who has been 
leading chooses to change parts and to follow instead there is perhaps no reason to 
expect that he will dance less correctly than before. 
 

In	this	sense,	the	Operations	regime	and	the	Understanding	regime	are	like	two	
independent	neighbors	who	interact	for	mutual	benefit.	In	the	model,	their	frequency	of	
interaction	however	influences	their	effective	rate	of	growth.	Our	model	is	a	specific	
realization	that	achieves	this	mutual	interaction	that	has	previously	been	widely	noted	
from	deep	qualitative	research.		
	
The	results	in	Figure	8	are	summarized	as	a	surface	plot	in	Figure	10.	K,	the	effective	rate	of	
growth	of	IOIC	was	determined	by	the	initial	IOI0,	and	the	frequency	of	interaction	(α	
1/ln	R).	The	former	determined	the	envelope	of	technological	possibility	space.	When	IOI0	
are	high,	the	effective	rate	of	growth	K	is	close	to	the	theoretical	combinatorial	rate	
determined	by	Equation	10	{	ln(1+	PIOI/2)	},	irrespective	of	whether	there	was	frequent	
exchange.	However,	when	the	IOI0	are	low,	the	limit	is	hit	repeatedly,	translating	into	
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halting	and	a	reduced	effective	rate	of	growth.	The	value	of	K	in	this	case	was	determined	
by	the	frequency	of	enabling	exchange	from	the	Understanding	regime,	with	higher	
frequency	(low	R)	leading	to	higher	effective	rate.	With	sufficiently	high	frequency,	even	
with	low	initial	IOI0,	the	effective	rate	K	eventually	approaches	the	theoretical	rate.	
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Fig.	10:	Variation	of	K	as	a	function	of	initial	IOI0	and	R.	Lower	R	refers	to	higher	
frequency	of	interaction	with	the	Understanding	regime.	
	
Detailed	historical	studies	of	technological	change	(Mokyr	2002)	note	centuries	of	slow,	
halting	progress	that	eventually	becomes	much	more	rapid	and	sustained	starting	in	the	
late	18th	century	in	the	UK.	An	interesting	consistency	of	these	observations	with	our	model	
is	seen	since	our	model	attributes	the	transition	to	sustained	higher	improvement	rate	to	
the	combinatorial	growth	of	individual	ideas	that	are	able	to	reinforce	one	another	by	the	
analogical	transfer	mechanism.	That	our	model	partially	accomplishes	this	through	the	
synergistic	exchange	between	Understanding	and	Operations	is	also	consistent	with	the	
detailed	historical	studies	as	interpreted	by	many	observers	(Schofield	1963,	Musson	1972,	
Rosenberg	and	Birdzell	1986,	Musson	and	Robinson	1989,	Mokyr	2002,	Lipsey	et	al.	2005).		
	
The	KJ	values	found	empirically	vary	by	approximately	a	factor	of	22	(from	0.03	to	0.65	
according	to	Magee	et	al.	(2014).	Equation	28	states	that	annual	improvement	rate	for	a	
domain	is	determined	by	the	product	of	K	times	the	scaling	parameter,	AJ,	and	the	
reciprocal	of	the	interaction	parameter,	dJ.	According	to	this	result,	the	last	two	parameters	
produce	the	variation	of	improvement	rates	across	domains.	During	the	embodiment	
process,	interactions	prevalent	in	the	domain	artifacts	influence	how	many	inventive	ideas	
can	be	absorbed.	The	percent	increase	in	successfully	absorbed	ideas	by	a	domain	artifact	
is	inversely	proportional	to	the	average	interaction	parameter	of	the	domain	dJ.		By	
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definition,	the	minimum	value	of	d	is	1	and	the	maximum	might	be	higher	but	a	value	of	6	
appears	reasonable.	The	other	factor	that	is	predicted	to	differentiate	domains	is	
performance	scaling.	Inventive	ideas	affect	artifact	performance	by	modifying	the	design	
parameters	in	domain	artifacts.	The	model	indicates	that	the	relative	improvement	of	
performance	for	a	given	number	of	absorbed	new	operating	ideas	is	governed	by	the	
scaling	parameter	AJ.	The	examples	presented	in	section	4.5	illustrated	that	the	value	of	AJ	
can	vary	across	domains.		In	particular,	for	the	IC	domain	(where	smaller	is	better),	AJ	is	
apparently	3	to	4	times	larger	than	for	typical	larger‐is‐better	domains	such	as	combustion	
engines.	Thus,	the	range	of	KJ	empirically	observed	is	potentially	explainable	by	changes	in	
dJ	and	AJ,	but	much	more	empirical	work	is	needed	to	fully	support	these	quantitative	
implications	of	Equation	28	as	will	be	discussed	further	below.		
	
The	empirical	findings	of	Benson	and	Magee	(2015a)	also	support	the	model.	In	particular,	
they	found	no	correlation	of	rates	in	domains	with	effort	in	a	domain	(measured	by	number	
of	patents	or	patenting	rate)	or	with	the	amount	of	outside	knowledge	used	by	a	domain	
(this	is	very	large	for	all	domains).	They	interpreted	their	findings	by	a	“rising	sea	
metaphor”	that	represents	all	inventions	and	scientific	output	being	equally	available	to	all	
domains	but	that	fundamentals	in	the	domains	determine	the	rate	of	performance	
improvement.	Overall	effort	in	Understanding	(science)	and	invention	increase	the	rates	in	
all	domains	but	the	differences	among	rates	of	improvement	are	due	to	differences	in	
fundamental	characteristics	among	the	domains.	The	model	in	this	paper	identifies	
interactions	and	scaling	as	two	such	fundamentals	and	equation	28	is	specific	about	the	
variation	expected	due	to	these	two	fundamental	characteristics.	
	
Thus,	our	model	is	supported	by	what	is	known	empirically	including	exponential	
dependence	of	performance	on	time;	slow,	halting	progress	in	the	early	stages	of	
technological	development;	a	role	for	science	in	enabling	technological	performance	
improvement;	the	range	of	variation	in	performance	improvement	across	domains;	and	the	
importance	of	domain	fundamentals	to	variation	in	performance.	However,	to	what	extent	
does	it	achieve	the	ideal	level	of	understanding	mentioned	in	section	2	when	discussing	the	
related	Benson	and	Magee	research?	It	is	‐	as	desired	‐	based	upon	what	is	known	about	the	
design/inventive	process	and	does	not	rely	upon	characteristics	only	determined	by	
observation	of	output	in	a	domain.	Moreover,	it	provides	explanations	of	existing	empirical	
results	not	made	by	prior	models.	However,	does	it	make	any	new	predictions;	do	its	
assumptions	appear	reasonable;	and	what	new	avenues	of	design	research,	if	any,	does	it	
open	up	for	further	exploration?	We	consider	these	issues	in	the	remainder	of	the	
discussion.	
		
There	are	three	new	predictions	made	by	the	model	as	instantiated	in	Equation	28.	These	
are:	1)	that	the	noise	in	estimating	KJ	should	vary	with	KJ	linearly	rather	than	for	example	
be	independent	of	KJ;	2)	that	performance	improvement	comparisons	across	domains	vary	
as	1/dJ	where	d	is	the	interaction	parameter;	and	3)	that	performance	improvement	across	
domains	vary	as	AJ	.	The	first	prediction	follows	from	the	fact	that	the	model	ascribes	all	
variation	in	the	process	to	the	probabilistic	analogical	transfer	process	that	creates	IOI	and	
thus	any	noise	generated	in	the	process	is	amplified	by	the	same	factors	that	determine	KJ	
(namely	1/dJ	and	AJ	.).	Very	recent	work	appears	to	confirm	the	first	prediction.	In	a	careful	



34	
	

study	of	the	observed	noise	in	a	wide	variety	of	domains,	Farmer	and	Lafond	have	find	that	
the	variation	in	KJ	is	proportional	to	KJ	offering	empirical	support	to	the	form	of	Equation	
28.	This	is	potentially	an	important	confirmation	of	a	prediction	of	the	model	but	the	
careful	work	by	Farmer	and	Lafond	has	potential	data	limitations	(detailed	in	their	paper)	
and	further	work	of	this	kind	is	highly	desirable.	Prediction	2	is	that	component	
interactions	(dJ),	which	characterize	the	domains,	influence	improvement	rate	by	
modulating	the	implementation	of	IOI	in	the	domain	artifacts.	This	prediction	can	be	tested	
by	study	of	the	performance	improvement	rates	over	a	variety	of	domains	where	an	
independent	assessment	of	dJ	is	made.	The	authors	have	performed	such	a	test	using	patent	
data	(Basnet	and	Magee	2016)	and	the	results,	which	demonstrate	positive	correlation	
between	improvement	rates	(KJ)	and	interaction	parameter	(dJ),	offer	support	for	the	
analysis	of	McNerney	et	al.	that	we	use	in	our	model.		Prediction	3	is	that	relative	
improvement	among	domains	varies	proportionally	to	the	scaling	parameter	for	the	
domain	design	parameters,	a	consequence	of	performance	following	a	power	law	with	the	
design	parameters.	If	scaling	laws	were	found	(or	derived)	for	a	variety	of	domains	whose	
rate	of	progress	is	known,	prediction	3	can	also	be	tested.	In	this	paper,	we	showed	that	the	
factor	A	is	at	least	3	times	larger	for	Integrated	circuits	than	for	combustion	engines.	While	
this	provides	preliminary	support	for	the	model	since	Integrated	circuits	improve	about	7	
times	faster	than	combustion	engines	(Magee	et	al,	2014),	two	points	do	not	achieve	a	
rigorous	test.	One	would	need	to	have	reliable	scaling	factors	for	at	least	10	domains	with	
varying	KJ	to	determine	whether	this	part	of	the	model	is	empirically	supported.		
	
A	fundamental	aspect	of	the	overall	model	is	that	it	differentiates	between	the	
idea/knowledge	and	artifact	aspects	of	design	and	invention.	Such	decomposition	is	an	
essential	step	in	arriving	at	our	key	result	(equation	28	through	equation	5).	It	is	not	clear	
that	this	assumption	is	testable	so	it	must	remain	an	unverified	assumption	or	definition	
but	we	do	note	that	it	appears	to	accord	with	reality	in	that	inventors/designers	spend	
significant	amount	of	time	working	with	ideas	and	representations	of	artifacts,	for	example	
in	the	form	of	sketches	and	drawings,	well	before	they	build	artifacts.	Others	have	noted	
the	higher	leverage	of	analogical	transfer	between	ideas	as	opposed	to	designed	artifacts	
(Weisberg	2006).		
	
A	potentially	important	and	non‐obvious	assumption	made	in	the	model	is	that	inventive	
effort	increases	as	the	cumulative	number	of	individual	operating	ideas	‐	IOIC	‐	increases.	
This	assumption	is	introduced	when	we	assume	that	every	existing	IOI	undergoes	a	
combination	attempt	in	each	time	step.	As	IOIC	increases,	this	means	that	more	inventions	
are	attempted	in	each	successive	time	step.	This	assumption	is	critical	to	obtaining	the	
exponential	time	dependence	for	IOIC	and	thus	for	Q	because	the	growth	of	IOIC	would	be	
choked	off	if	inventive	attempts	did	not	increase	over	time.	Although	a	rigorous	test	of	this	
assumption	is	suggested	for	further	work,	we	do	note	support	for	the	assumption	in	the	
exponential	growth	of	patents	over	time	(Youn	et	al.	2014,	Packalen	and	Bhattachayra,	
2015)14.		Approximate	support	is	also	given	by	the	roughly	exponential	growth	of	R&D	

																																																								
14	Both	of	these	papers	show	more	rapid	exponential	increases	before	1870	and	slower	but	
still	exponential	increases	over	time	from	1870	to	the	present	in	the	number	of	US	patents.	
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spending	over	time	(NSF,	2014)	and	by	the	roughly	exponential	growth	of	graduate	
engineers	globally15	over	time	(NSF,	2014)	
	
The	model	assumes	a	simple	exchange	between	Understanding	(largely	science)	and	
Operations	(largely	technology)	as	described	by	Equations	13	and	14.	The	details	of	this	
mechanism	are	not	testable	but	in	our	opinion	not	critical	because	other	formalisms	(based	
upon	differences	rather	than	ratios	and	based	upon	count	of	units	of	understanding	rather	
than	our	choice	of	explanatory	reach)	lead	to	results	closely	similar	to	those	reported	here.	
Therefore,	this	assumption	remains	unverified	but	is	not	critical	to	our	conclusions.	
Similarly,	the	initial	value	of	IOI0	chosen	in	the	simulation	(and	the	exchange	frequency	
with	Understanding	(α	1/ln	R))	is	essential	to	our	finding	of	halting	slow	growth	that	can	
transition	to	sustained	and	more	rapid	growth.	Although	this	finding	is	consistent	with	
detailed	observation	as	noted	above	and	the	initial	number	of	useful	ideas	must	be	small,	
there	is	no	independent	means	of	assessing	IOI0.	Moreover,	we	have	made	a	number	of	
assumptions	in	parameter	values	to	construct	a	simple	and	operational	simulation.	The	
values	for	parameters	in	the	simulation,	such	as	PIOI,	number	of	time	steps,	number	of	
scientific	fields,	R,	fitness	values	are	chosen	to	keep	the	computational	cost	reasonable,	
without	sacrificing	the	essential	aspects.	Simulations	show	that	results	are	robust	to	
different	combinations	of	parameter	values	with	respect	to	exponential	trends	and	
variation	in	rates.	Therefore,	these	choices	and	simplifications	do	not	undercut	the	
explanatory	or	predictive	capabilities	of	the	model	but	do	limit	the	potential	for	non‐
calibrated	calculation	of,	for	example,	the	improvement	rate	for	a	domain	since	K	is	only	
approximately	known.		
	
To	make	the	model	tractable,	we	have	made	number	of	simplifying	abstractions,	
introducing	several	other	limitations	to	the	model.	Since	the	model	is	not	agent‐based,	it	
does	not	distinguish	between	organizations	nor	between	inventors.	Since	our	goal	is	to	
explain	the	patterns	at	the	domain	level,	we	consider	the	domain	as	one	entity.	For	this	
reason,	variations	among	organizations	or	among	inventors	within	a	domain	are	not	taken	
into	account,	and	hence	the	model	is	not	useful	to	understand	organizational	or	individual	
inventor	effectiveness	in	its	current	form	and	any	systematic	differences	among	inventor	
capability	across	domains	is	ignored.		Second,	once	IOI	are	created	by	any	inventor,	the	
model	assumes	they	are	instantly	available	for	combinatorial	analogical	transfer	across	the	
pool	underlying	all	domains.	Thus,	the	model	does	not	take	into	account	time	delay	that	can	
result	due	to,	for	example,	geography,	secrecy	and	governmental	regulations,	and	hence	is	
not	useful	for	studying	such	factors’	influence	in	technological	change.	Third,	the	model	
assumes	that	2	pre‐existing	ideas	are	sufficient	(probabilistically)	to	create	another	idea	
whereas	inventions	also	result	from	bringing	more	than	2	pre‐existing	ideas	together.	
However,	adding	such	complications	to	the	model	and	simulation	does	not	change	the	
fundamental	findings	since	the	creation	of	new	ideas	would	still	increase	as	the	number	of	
pre‐existing	ideas	increase	as	long	as	we	still	assume	an	increasing	invention	effort.		
Fourth,	although	conceptually	the	notion	of	fitness	of	scientific	fields	makes	sense,	how	the	

																																																								
15	Other	supporting	evidence	is	also	possible	to	see	in	the	NSF	material	at	
http://www.nsf.gov/statistics/seind14/index.cfm/overview/c0s1.htm#s2	
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fitness	can	be	measured,	and	who	measures	it	for	a	scientific	field	are	contested,	especially	
for	rapidly	growing	fields.	
	
This	analysis	of	the	predictions	points	out	that	some	key	aspects	of	Equation	28	have	the	
potential	to	be	empirically	tested	and	thus	are	clear	future	research	activities	suggested	by	
the	model.	Among	these	future	research	activities,	one	important	issue	to	discuss	is	the	
extensions	possible	to	design	research	potentially	opened	up	by	the	current	work.	The	
model	in	this	paper	explicitly	considers	design	changes	in	succeeding	artifacts	in	a	series	to	
be	the	central	element	in	technological	change	over	time.	Thus,	it	adds	to	the	few	other	
papers	(Baldwin	and	Clark	2006,	Luo	et	al.	2014)	that	have	connected	these	two	large	
fields	of	research	‐	technological	change	and	design	theory.	This	paper	in	particular	
connects	design	conceptually	and	quantitatively	to	changes	in	performance	over	time.	
Since	there	is	significant	data	of	this	type	(Moore,	1965,	Girifalco	1991,	Nordhaus	1996,	
Koh	and	Magee	(2006,	2008)	and	Leinhard	2008),	this	paper	points	the	way	for	further	
quantitative	comparisons	of	models	based	upon	design	theory	with	data.	Another	line	of	
research	that	this	model	suggests	is	more	explicit	consideration	of	interactions	and	scaling	
as	part	of	design	theories.	The	current	model	explores	simple	models	for	both	of	these	that	
are	capable	of	predicting	differences	in	time	dependence	of	performance	in	differing	
domains.		Design	of	artifacts	could	conceptually	be	changed	so	that	the	potential	for	
improvement	with	ongoing	redesign	is	enhanced	possibly	through	reduced	interactions	or	
more	intensive	scaling	relationships.	Thus,	the	current	paper	suggests	the	potential	
importance	of	further	research	on	specific	differences	in	design	approaches	with	different	
scaling	laws	and	with	different	level	of	interactions.		
	

6. Concluding remarks 
	
The	model	and	simulations	of	the	improvements	in	performance	due	to	a	series	of	
inventions	(new	designs)	over	time	presented	in	this	work	are	based	upon	a	simple	version	
of	analogical	transfer	as	a	combinatorial	process	among	pre‐existing	operational/inventive	
ideas.	The	model	is	supported	by	a	number	of	empirically	known	aspects	of	technological	
change	including:	
1. The	transition	from	slow,	hesitant	technological	change	to	more	sustained	technological	

progress	as	technological	ideas	accumulate;	
2. A	role	for	the	emergence	of	the	scientific	process	in	stimulating	the	transition	in	point	1;	
3. The	exponential	increase	of	performance	with	time	(generalized	Moore’s	Law)	seen	

quite	widely	empirically;	
4. That	stochastic	noise	in	the	slopes	of	the	log	performance	vs.	time	curves	is	

proportional	to	the	slope;	
5. The	level	of	effort	in	domains	is	not	important	in	the	rate	of	progress.	

	
The	model	also	indicates	that:	
6. The	rate	of	performance	increase	in	a	technological	domain	is	at	least	partly	(and	

possibly	largely)	due	to	fundamental	technical	reasons	(component	interactions	and	
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scaling	of	design	variables),	rather	than	contextual	reasons	(such	as	investment	in	R&D,	
scientific	and	engineering	talent,	or	organizational	aspects).	

	
Numerous	modeling	assumptions	were	made	in	developing	the	model	but	only	some	of	
these	are	critical	to	the	conclusions	just	listed.	Further	specific	research	is	suggested	to	
move	some	critical	assumptions	into	the	testable	category,	and	to	consider	interactions	and	
scaling	parameters	in	new	design	approaches.	These	are	discussed	in	the	paper	particularly	
for	the	assumptions	underlying	point	6	above.	The	tests	involve	detailed	studies	of	the	
interaction	and	scaling	parameters	in	a	variety	of	domains.	All	of	this	future	research	could	
support	or	lead	to	modification	of	point	6.		
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